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Abstract─ The Elliptic curve cryptography ( ECC) an emerging 
favorite because it requires less computational power,   
communication bandwidth, and memory when compared to 
other cryptosystems. In this paper we present Elliptic curve 
cryptography and Diffie–Hellman key agreement protocol, itself 
is an anonymous (non-authenticated) key-agreement protocol, it 
provides the basis for a variety of authenticated protocols, and is 
used to provide forward secrecy for web browsers application 
using HTTPS. In its popular deployment on the 
internet, HTTPS provides authentication of the web site and 
associated web server that one is communicating with, which 
protects against Man-in-the-middle attacks. Additionally, it 
provides bidirectional encryption of communications between a 
client and server, which protects against eavesdropping and 
tampering with and/or forging the contents of the 
communication. 
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I. INTRODUCTION 
 Elliptic Curve Cryptography (ECC) was first proposed by 
victor Miller  and independently by Neal Koblitz  in the mid-
1980s and has evolved into a mature public-key 
cryptosystem.  Compared to its traditional counterparts, ECC 
offers the same level of security using much smaller keys.   
This result in faster computations and savings in memory, 
power and bandwidth those are especially important in 
constrained environments.  More   significantly, the 
advantage of ECC over its competitors increases, as the 
security needs increase over time. Recently the National 
Institute of standards and Technology (NIST) approved ECC 
for use by the U.S government. Several standards 
organizations, such as Institute of Electrical & Electronics 
Engineers (IEEE), American National  
Standards Institute (ANSI), Open Mobile Alliance (OMA) 
and Internet Engineering Task Force (IETF), have ongoing 
efforts to include ECC as a required or recommended security 
mechanism. Here we present our new algorithm using 
Diffie_hellman key exchange algorithm providing forward 
secrecy for web browsers application.  
 

II. RELATED WORK 
Standards for elliptic curve systems are currently being 
drafted by various accredited standards bodies around the 
world; some of this work is summarized below. 
1. The Elliptic Curve Digital Signature Algorithm (ECDSA) 
was adopted in January 1999 as an official American National 
Standards Institute (ANSI) standard. The ANSI X9 (Financial 

Services) working group is also drafting a standard for elliptic 
curve key agreement and transport protocols. 
2. Elliptic curves are in the draft IEEE P1363 standard 
(Standard Specifications for PublicKey Cryptography), which 
includes encryption, signature, and key agreement 
mechanisms. Elliptic curves over Fp and over F2m are both 
supported. For the 
 3. The OAKLEY Key Determination Protocol of the Internet 
Engineering Task Force (IETF) describes a key agreement 
protocol that is a variant of Diffie–Hellman. It allows for a 
variety of groups to be used, including elliptic curves over Fp 
and F2m . The document makes specific mention of elliptic 
curve groups over the fields F2 155 and F2 210 . 
A draft is available from the web site 
http://www.ietf.cnri.reston.va.us/. 
4. ECDSA is specified in the draft document ISO/IEC 14888: 
Digital signature with appendix – Part 3: Certificate-based 
mechanisms. 
5. The ISO/IEC 15946 draft standard specifies various 
cryptographic techinques based on elliptic curves including 
signature schemes, public-key encyrption schemes, and key 
establishment protocols. 
6. The ATM Forum Technical Committee’s Phase I ATM 
Security Specification draft document aims to provide 
security mechanisms for Asynchronous Transfer Mode 
(ATM) networks. Security services provided include 
confidentiality, authentication, data integrity, and access 
control. A variety of systems are supported, including RSA, 
DSA, and elliptic curve systems. 
As these drafts become officially adopted by the appropriate 
standards bodies, one can expect elliptic curve systems to be 
widely used by providers of information security An elliptic 
curve is the set of solutions of an equation of the form can be 
shown as below: 

y 2+�axy +�by =� x 3+�cx 2+�dx +�e     (1) 
Where a, b, c, d, and e, are real numbers. 
A special addition operation is defined over elliptic curves 
and this with the inclusion of a point O,called point at 
infinity.If three points are on a line intersecting an  elliptic 
curve, then their sumis equal to this point at infinity O,which 
acts as the identity element for this  addition operation.   
Sometimes the general equation (1) can be referred as 
Weierstrass equation as shown in (2) 
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Fig.1:  Elliptic curves 

 
Fig.2: Elliptic curve 

 
 If we wanted use a elliptic curve to be used for 
cryptography the necessary condition is the curve is not 
singular, i.e. the discriminate of polynomial:  

f(x) = x3  +ax +b : 

4a 3   +�27b2    ≠�0            (3) 
Figures 1 and 2 show the two elliptic curves are 

 

       y 2    =�x 3   +�2 x +�5       (4) and 

 y 2    =�x 3   −�2 x +�1         (5) 
We can see those two equations meet  
An elliptic curve is the set of solutions of an equation of the 
form can be shown as below: 

y 2   +�axy +�by =� x 3   +�cx 2   +�dx +�e     (1) 
Where a, b, c, d, and e, are real numbers. 
  An elliptic group over the Galois Field Ep(a,b) is obtained 

by computing x3   + ax + b mod p for 0 ≤ x < p.  The 
constants a and b are non negative integers smaller than the 
prime number p and as here we used “mod p”, so equation 
(3) should be read as: 

4a3+27b2 mod p ≠ 0 
For each value of x one needs to determine whether or not it 
is a quadratic residue.   If it is the case, then there are two 
values in the elliptic group.  If not, then the point is not in 
the elliptic Ep(a,b) group. When we fixed a prime number, p 
and then we can have the Galois Field Ep (a, b) group via 
the fixed constants a and b following the above conditions 
characteristic two finite fields, polynomial bases and normal 
bases of F2m over an arbitrary subfield F2l are supported. 
P1363 also includes discrete log systems in subgroups of the 
multiplicative group of the integers modulo a prime, as well 
as RSA encryption and signatures. 

The latest drafts are available from the web site 
http://stdsbbs.ieee.org/. 
For example, let the points P =(x1, y1) and Q (x2, y2) be in 
the elliptic group Ep(a,b) group and O be the point at 
infinity. The rules for addition over the elliptic group Ep(a,b) 
are : 
(1)  P+O = O + P = P   
(2)  If x2 =  x1 a n d  y2 =  -y1,  
that is P(x1, y1) and Q = (x2, y2) = (x1-y1) = -P,  
that is the case: P+Q = O. 
3)  If Q ≠ –P, then their sum P + Q = (x3, y3) is 
given by; 

����x3   =�λ�−�x1   −�x2   mod p 

   y3   =�λ�(x1   −�x3) −� y1   mod p 

 
III. DIFFIE-HELLMAN KEY EXCHANGE 

Diffie–Hellman establishes a shared secret that can be used 
for secret communications by exchanging data over a public 
network. The following diagram illustrates the general idea of 
the key exchange by using colours instead of a very large 
number. The key part of the process is that Alice And Bob 
exchange their secret colours in a mix only. Finally this 
generates an identical key that is mathematically difficult 
(impossible for modern supercomputers to do in a reasonable 
amount of time) to reverse for another party that might have 
been listening in on them. Alice and Bob now use this 
common secret to encrypt and decrypt their sent and received 
data. Note that the yellow paint is already agreed by Alice and 
Bob: 

 
Fig 3: Diffie-hellman key exchange. 
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IV. IN PREVIOUS SYSTEM 
RSA algorithm simply capitalizes on the fact that there is no 
efficient way to factor very large integers. The security of the 
whole algorithm relies on that fact. If someone comes up with 
an easy way of factoring a large number, then that’s the end of 
the RSA algorithm. Then any message encrypted with the 
RSA algorithm is no more secure. 
The security of RSA algorithm depends on the ability of the 
hacker to factorise numbers. Newer faster and better methods 
for factoring numbers are constantly being devised. The 
current best for long numbers of the number field sieve. Prime 
number of a length that was unimaginable a mere decade ago 
are now factored easily.Obiviously the larger the number is, 
the harder it is to fact and so the better the security of RSA. 
As theory and computers improve large and larger keys will 
have to be used. The disadvantage in using extremely long 
keys is the computational overhead involved in encryption/ 
decryption. This will only become a problem if a new 
factoring technique emerges that requires keys of such lengths 
to be used that necessary key length increase much faster than 
the increasing average speed of computers utilizing the RSA 
algorithm. 
 

V.  OUR PROPOSED WORK AND PERFORMANCE 
5.1 Diffie-Hellman key exchange using Elliptic Curve 
(DHECC)  
Elliptic Curve Cryptography (ECC) is emerging as an 
attractive public-key cryptosystem for mobile/wireless 
environments. Compared to traditional cryptosystems like 
RSA, ECC offers equivalent security with smaller key sizes, 
which results in faster computation, lower power 
consumption, as well as memory and bandwidth savings. This 
is especially useful for mobile devices which are typically 
limited in terms of their CPU, power and network 
connectivity. However, the true impact of any public-key 
cryptosystem can only be evaluated in the context of a 
security protocol. This paper presents a first estimate of the 
performance improvements that can be expected in SSL 
(Secure Socket Layer), the dominant security protocol on the 
Web today, by adding ECC support. 
An elliptic curve E which is over the finite field Fp is given 
through an equation. An equation will be of the form 
 

Y2 = X3 + aX + b,    

a, b ε Fp, and − (4a3 + 27b2) ≠ 0 
 

Please note that as stated in the beginning of the section, the 
“=” should be replaced by a “≡” in the above definition. 
Another remark is that when we talk about partial derivatives 
we mean the “formal partial derivate” and this formal partial 
derivate can be defined (see beginning of this section) over an 
arbitrary field. 
Suppose two communication parties, Alice and Bob, want to 
agree upon a key which will be later used for encrypted 
communication in conjunction with a private key 
cryptosystem. 

They first fix a finite field Fq, an elliptic curve E defined over 

it and a base point BεE (the base point will be with high 

order). To generate a key, first Alice chooses a random aεFq 
(this random is of high order) which she keeps secret. Next 

she calculates aBεE which is public and sends it to Bob. Bob 
does the same steps, i.e. he chooses a random integer b (this 
random integer will be secret) and calculates bB which is sent 

to Alice. Their secret common key is then P = abBεE. 
Definition An elliptic curve E over the field F is a smooth 
curve in the so it is called”long transform” 
 

Y2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, aiεF 

 

We let E(F) denote the set of points (x, y) εF2 these points 
satisfy this equation, they are also along with a “point at 
infinity” which is denoted by O. 
Remember that smooth curve means that is the curve in 
which there is no point in E(F) where both partial derivatives 
vanish. (Remember that when we talk about partial 
derivatives we mean the “formal partial derivate” and this 
formal partial derivate can be defined (see beginning of this 
section) over an arbitrary field.) The definition given above is 
valid for any field. But in cryptography we are only interested 
in finite fields. Considering only finite fields we get an 
“easier” equation. Two finite fields are of particular interest. 

The finite field Fp with p ε E elements, because of its 
structure, and the finite field Fqm with q = pr Elements, since 
setting p = 2 the arithmetic in this field will be well suited for 
implementations in hardware. 
For generation of a shared secret key between A and B using 
ECDH, both have to agree up on EC domain parameters. 
Both end have a key pair consisting of a private key d(a 
randomly selected integer less then n, where n is the order of 
the curve) and another is a public key Q= d*G (G is the 
generator point). Let (dA, QA) be the private-public key pair 
of A and (dB, QB) be the private-public key of B. 
 

1. The end A Computes  KA= (XA, YA) = dA * QB 
2. The end B Computes  KB= (XB, YB) = dB * QA 
3. Since dA * QB = dAdB G= dBdA G = dB * QA . 

Therefore  KA= KB and hence XA =XB 
4. (Where G is generator point) 
5. Hence the shared secret is KA. 

Since it is practically impossible to find the private key dA or 
dB from the public key KA 

 

5.2 Two level Encryption Decryption by Diffie – Hellman and 
Elliptic Curve method 

 
Today, the scientific efforts are looking for a smaller and a 
very faster public key cryptosystem, at the same time the 
approach should be practical and very secure, even for the 
most constrained environments. For any cryptographic 
technique, there is an analogue for Elliptic Curve. One of 
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these systems is Diffie – Hellman key exchange system.  
This paper proposed methods to encrypt and decrypt the 
message, and we will encrypt and decrypt the message  by 
using the Diffie–Hellman Exchanging key. And this is a 
secrete point in the proposed methods (M1) and (M2).  
In the first method (M1), the sender compute the 
multiplication between the coordinates of the key in the 
encryption algorithm, and the receiver compute the 
multiplication between the coordinates of the key in the 
decryption algorithm.  
   In the second method (M2), we support the system more 
security of the first method, because the sender compute the 
exponentiation function between the coordinates of the key in 
the encryption algorithm (use fast exponentiation method), 
and the receiver compute the inverse of the exponentiation 
function between the coordinates of the key in the decryption 
algorithm. 
This system is merely a method for exchanging key and no 
massages are involved in the system. The following algorithm 
illustrates this system.  
The Algorithm of Diffie–Hellman key exchange system Using 
ECC 
 Alice and Bob first choose a finite field Fp and an elliptic 

curve E defined over it (E(Fp)). 
 They publicly choose a random base point B belongs E. 
 Alice chooses a secret random integer e. He then 

computes eBεE. In addition, send it to Bob. 
 Bob chooses a secret random integer d. She then 

computes dBεE. And send it to Alice. 
 Then eB and dB are public and e and d are secret. 
 Alice computes the secret key edB = e(dB). 
 Bob computes the secret key edB = d(eB). 

There is no fast way to compute edB if only knows B,     eB  
and dB.After these setups, Alice and Bob have the same point 
(only Alice and Bob know it). Then to start with (M1) and 
(M2), let us consider the following algorithms 
 
Algorithm of (M1) 
Alice and Bob Compute edB = S = (S1, S2). (Using Diffie – Hellman 
Scheme) 

Alice sends a message M ε E to Bob as follows: 
Compute (S1 * S2) mod N = K. 
Compute K*M = C, and send C to Bob. 
 
Bob receives C and decrypts it as follows: 
Compute (S1 * S2)modN = K. 
Compute (K–1)modN.  
(where N = #E) 
K–1*C = K–1*K*M = M. 
In the first method (M1), the sender compute the multiplication 
between the coordinates of the key in the encryption algorithm, and 
the receiver compute the multiplication between the coordinates of 
the key in the decryption algorithm.  
Algorithm of (M2) 
Alice and Bob Compute edB = S = (S1, S2). 
Using Diffie – Hellman Scheme) 
Alice sends a message M to Bob as follows: 
 

Compute (s1
S2) mod N = K. 

Compute K*M = C, and send C to Bob. 
Bob receives C and decrypts it as follows: 
Compute (s1

S2)mod N = K. 
Compute (K–1) mod N. 
K–1*C = K–1*K*M = M.  
 In the second method (M2), we support the system more 
security of the first method, because the sender compute the 
exponentiation function between the coordinates of the key in 
the encryption algorithm (use fast exponentiation method), 
and the receiver compute the inverse of the exponentiation 
function between the coordinates of the key in the decryption 
algorithm. 
 
System Test: 
Let E be an elliptic curve define over Fp 
Where p = 3023 with parameters a = 1, b = 2547  
Where (4a3+27 b2) mod p = 2027 0.  
And #E = 3083.  
Since #E is prime number then by theorem1, every point on E 
in base point, therefore let B = (2237, 2480).   
To apply this system test using (M1), at first we must apply 
Diffie-Hellman Exchanging key 

 Alice chooses a secret random integer e = 2313. 
eB = 2313 (2237 , 2480) = (934 , 29) 
And send (934, 29) to Bob . 

 Bob chooses a secret random integer d = 1236. 
dB =1236 (2237 , 2480) = (1713, 1709) 
And send (1713 , 1709) to Alice 

 Alice computes the secret key e (dB) 
= 2313 (1713, 1709). 
edB = (2537 , 1632) = S 

 Bob computes the secret key d (eB) =1236 (934, 
29). 
deB = (2537 , 1632) = S 

    Now, Alice and Bob have the same point S = (2537, 1632) 
If Alice send a message M = (2284, 2430) to Bob 
 

 Compute (S1, S2).mod p = (2537 * 1632) mod 3083 
= 2998  = K. 

 Compute K*M = 2998 (2284, 2430) 
= (2179, 1833) 
=C, and send it to Bob. 

 Bob receives C and decrypts it as follows: 
o Compute (S1, S2).mod p = 2998 =K 
o Compute (K–1) mod N = (2998)–1  

 
mod 3083= 1342 

o K–1 C =1342 (2179, 1833) 
= (2284, 2430) 

To apply this system test using the algorithm (M2), at first we 
must apply Diffie–Hellman Exchanging   key.  
By the same procedure to solve Diffie–Hellman scheme we 
have obtained 

S = (2537, 1632) 
If Alice sends a message M = (2284, 2430) to Bob using 
(M2), he does the following: 
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o Compute(s1
S2)mod N = (25371632) mod 

3083= 323=K. 
o Compute K* M = 323 (2284, 2430) 

= (2555, 1066) 
=C, and send it to Bob. 

 Bob receives C and decrypts it as follows: 
o Compute (s1

S2)mod N = 323=K. 
o Compute (K–1) mod N = (323)–1 mod 

3083= 1594. 
o K–1 C = 1594 (2555 , 1066) 

= (2284, 2430) 
= M. 

Performance─ Performance of Elliptical Cryptography with 
Diffie Hellman Key Exchange will depend on the hardware 
of system. The Performance of Elliptical Cryptography with 
Diffie Hellman Key Exchange will also depend on an another 
factor that is the quality of the JavaScript which is our 
execution environment.  
 The following table shows the times taken for various 
public-key operations on a cross-section of browsers and 
hardware both.  
EC multiply = Elliptic curve point multiplication, bit size 
denotes both curve prime size and scalar multiplier size.  
Browsers used: 
Google Chrome version 10.0.648.151 
Mozilla Firefox version 3.6.15 
Microsoft Internet Explorer version 8.0.7601.17514  
PC = Win7 64-bit, Intel Core i5 M520 (2.4GHz)  
  

TABLE 1: CROSS SECTION OF BROWSERS   AND 
HARDWARE 

S.N
o. 

Operation 
Browser’s 

(In which operations are performed) 

RSA 
(with 
key 
size) 

DHEC
C 

(with 
key 
size) 

Chrome(ms) Fire fox(ms) IE(ms) 

RS
A 

DHEC
C 

RS
A 

DHEC
C 

RS
A 

DHEC
C 

1 

public
, 512 
bit, 
e=3 

multipl
y, 128 

bit 
0 25 1 200 4 500 

2 

public
, 512 
bit, 

e=F4 

multipl
y, 160 

bit 
1 30 6 450 20 820 

3 

public
, 1024 

bit, 
e=3 

multipl
y, 192 

bit 
1 35 3 750 10 1250 

4 

public
, 1024 

bit, 
e=F4 

multipl
y, 224 

bit 
2 50 15 900 70 2500 

5 
privat
e, 512 

bit 

multipl
y, 256 

bit 
5 65 75 1300 190 3100 

 
Fig 4: Performance of RSA 

Figure 4 shows the performance of RSA algorithm with 
respect to time and number of operation performed by 
algorithm in Chorme and Firefox, internet explorer web 
browser. 

Fig 5: Performance of DHECC 
 

Figure 5 shows the performance of Elliptic curve 
cryptography algorithm performance with respect to time and 
number of operation using chrome, Firefox and internet 
explorer web browser. 
 

 CONCLUSION 
The Diffie–Hellman scheme is one of the exchanging key 
cryptosystem, no massages are involved in this scheme, in 
this report, and we try to benefit from this scheme by use the 
key (which exchange it) as a secret key. (That is, we know 
now the one of the advantages of the Diffie–Hellman key 
exchange system) and we are using Elliptic curve 
cryptography for encryption and Decryption. We proposed 
two different methods to encrypt and decrypt the message. In 
the second method, we support the system more security of 
the first method, because the sender compute the 
exponentiation function between the coordinates of the key in 
the encryption algorithm (use fast exponentiation method), 
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and the receiver compute the inverse of the exponentiation 
function between the coordinates of the key in the decryption 
algorithm. While in the first method, the sender compute the 
multiplication between the coordinates of the key in the 
encryption algorithm, and the receiver compute the 
multiplication between the coordinates of the key in the 
decryption algorithm and we can use our approach for 
forward secrecy in HTTPS protocol. 
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