Recent Developments in Indian Sign Language Recognition: An Analysis

Dalesha M Viswanathan¹, Sumam Mary Idicula²

¹Dept. Of Computer Science,
Cochin University of science and Technology, Cochin-22, Kerala, India

²Professor & Director Dept. Of Computer Science,
Cochin University Of science and Technology, Cochin-22, Kerala, India

Abstract — There exists significant variation between sign language recognition processes across the world, although there are many similarities. Pre-processing, feature extraction and classification are the three major steps involved in the sign language recognition process. An analysis of scientific literature indicates the potential of various methods in achieving significantly high accuracy in image recognition. Further examination of the literature indicates the voluminous works carried out in American Sign Language recognition systems and most of these works compare the potential of various methods and combination of methods for their accuracy. Although, the comparison using randomly selected gestures for their potential would result in realistic overall accuracy for ASL where the gestures are simple and distinct, the complete adoption of such methods for Indian Sign Language (ISL) recognition may not be ideal due to the complexity in ISL. Other than static gestures, the dynamic gestures, gestures including facial expression, similarity in gestures, all increase the complexity of ISL. Therefore, the potential of different methods and their combinations need to evaluate in the context of ISL. A preliminary study to analyse the potential of promising feature extraction methods indicated that the methods could vary significantly while handling gestures with resemblances. This clearly indicates the necessity to screen gesture recognition methods for their accuracy in handling gestures in the context of complex ISL.

Keywords— Indian Sign Language, Gesture Recognition, Preprocessing, Feature Extraction, Classification.

I. INTRODUCTION

Sign languages have originated and evolved independently at different parts of the world. Sometimes, the connection with the native language and prevalent sign language are not very conspicuous. As an example, although British and Americans are predominantly native English speakers, their sign language differs significantly. American Sign Language(ASL) is single handed while handling alphabets, whereas British sign language (BSL) uses both hands except for the alphabet C(Perniss et al., 2007). There exists significant variation between sign languages across the world although there are similarities. The ASL, for instance has a strong connection with French sign language, similar is the case for Arabic sign language(Mohandes, 2013), however, the ASL varies significantly with BSL and Australian sign languages(Perniss et al., 2007).

There exist enormous complexity in Indian sign Languages and the challenges are manifold. Morgan M. W (1998) reviewed the Indian sign languages and inferred that the prevalent sign language has a strong South Indian Connection. Attempts have been made to have regional sign languages based on the local dialect and this further enhance the challenge of having a common and uniform ISL(Rajam and Balakrishnan, 2012). Other than static gestures, the dynamic gestures, gestures including facial expression, similarity in gestures all increases the complexity of ISL(Nandy et al., 2010). For example, slight variation in positioning of index finger on nose would interpret as “Think” or “Woman” in ISL(Morgan, 2009). Also, at interpretation level the language follows Subject-Object-Verb pattern contrary to ASL where S-V-O pattern is followed. An analysis of scientific literature provide various methods in combination have yielded in significantly high accuracy in image recognition especially on an ASL context (Oz and Leu, 2011; Pugeault et al., 2011; Rashid et al., 2009; Wang et al., 2013). However, the total adoption of different methods is not possible for ISL. As explained, there exist postures in ISL with high resemblances, complex dynamic gestures, and facial expressions and similarity in gestures due to relative positioning of hand on hand and hand on face(Geetha and Manjusha, 2012; Ghotkar and Kharate, 2014; Nair and Bindu, 2013; Nandy et al., 2010). Therefore, various methods need to be screened for their accuracy in handling complex and difficult signs. This is very important as attempts are generally made using a set of randomly chosen gestures and the overall accuracy is predicted(Binh and Ejima, 2006; Cortes et al., 2006; Elons and Aboull-Ela, 2012; Kosmidou and Hadjileontiadis, 2010; Munib et al., 2007; Priyad and Bora, 2013; Rokade and Doye, 2011). However, the total postures and pattern are enormous in ISL and the potential of methods to handle complex selected signs would indicate the strength and weaknesses of each method and helps to arrive a combination of best methods. Therefore, this review tries to analyses the sign language computing globally and on an Indian context so that the potential of various methods to successfully interpret the Indian sign language are investigated.
II. COMPLEXITY OF INDIAN SIGN LANGUAGE

Indian sign language is quite complex in contrast to the ASL (Geetha and Manjusha, 2012; Johnson and Russell, 2008) where most of the gestures are performed with both the hands, complexity due to relative position of hand on hand and face, a higher proportion of dynamic gestures in expressing single postures (Geetha and Manjusha, 2012; Nair and Bindu, 2013; Nandy et al., 2010). In addition, one hand often moves faster than the other leading to complicated gesture postures (Geetha and Manjusha, 2012). Whereas the ASL is quite straightforward involving relatively simple hand gestures (Binh and Ejima, 2006; Rashid et al., 2009; Vogler et al., 1997). As discussed earlier, ASL uses single hand for most of the gestures (Perniss et al., 2007). Many works in global sign language computing use a set of static signs to test the accuracy level of different postures (Cortes et al., 2006; Elons and Aboull-Ela, 2012; Kosmidou and Hadjileontiadis, 2010; Munib et al., 2007; Priyal and Bora, 2013; Rokade and Doyle, 2011). In ISL most of the gestures are dynamic involving both the hands as sequences of gestures (Geetha and Manjusha, 2012). In addition, at lexical level the complexity is enormous in ISL. There exist several types of hand gestures across the Indian continent. In a study, deaf and dumb schools in India were surveyed and found that significant variation in signs used (Johnson and Russell, 2008). In an attempt, the Ramakrishna Mission framed a Dictionary in collaboration with CBM International, Germany – to standardize ISL. In that attempt, sign language computing database was compiled from diversified sources (42 cities in 12 states) to provide a common sign language code for all over India (http://indiansignlanguage.org/history/), indicating the complexity of sign language data base. In addition, at interpretation level the ISL follows a Subject-Object-Verb (S-O-V) pattern in contrast to the S-V-O pattern in ASL. The thematic diagram (http://www.babysignlanguage.com/dictionary/a-d/) presented here explain this difference. Baby drinks milk in ASL will be sequenced as baby-milk-drinks in ISL (Figure 1).

III. AN ANALYSIS OF METHODS EMPLOYED IN SIGN LANGUAGE RECOGNITION

The sensor based recognition system uses cumbersome equipment such as gloves and kinetic sensor for the detection of images. These far from natural methods have a limited applicability due to the cumbersome equipment usage and user preference. Whereas the vision based gesture detection has the advantage of simplicity, user preference and relatively high accuracy. The detection involves primarily 3 steps such as pre-processing, feature extraction and classification (Fig 2) (Mitra and Acharya, 2007; Mohandes, 2013). The various methods employed in sign language recognition on a global scale are reviewed in this section to assess their suitability in recognising ISL purposes.
The scalability problems of available recognition systems have minimised by segmentation based on Maximum Curvature Points (MCPs) and thus reduce the requirement of large training data set and reduce the complexity (Geetha et al., 2013). In an attempt, classification is performed using direction histogram due to high performance for illumination and invariance of orientation. The approaches based on K-nearest neighbour metrics and Euclidean distance resulted in high performance in recognising ISL (Nandy et al., 2010). The Table 1 indicates the most dominating research works done on ISL.

V. CONCLUSIONS

The overall analysis of selected review (based on Web of Science citations’) clearly indicates the advancement of sign language recognition research globally and on an Indian context. Apart from few promising works, most of the research works use static gestures for validation. As discussed earlier, the complexity of ISL is high and the ISL evolved irrespective of computational convenience and based on huge lexical complexity. Therefore, research works should address the potential of different approaches to tackle the complexity of ISL.

![Fig:2 Major steps involved in sign language Recognition](image)

Higher-order Local Auto-Correlation (HLAC) based features extraction based on HMM with skipping segmentation step and was found to be robust to variation illumination and background (Ishihara et al., 2004). An attempt has been made in converting Malaysian sign language into voice signals using Discrete Cosine Transform (DCT) in combination with neural network models gave an accuracy of 91% (Paulraj et al., 2008). The static images are converted with accuracy by using Binary-Decimal conversion algorithm for Tamil sign language, a subsidiary of ISL (Rajam and Balakrishnan, 2012). An approach based on dynamic Bayesian network (DBN), for ten isolated gestures yielded 99.59% accuracy (Suk et al., 2008).

The segmental Boosted HMMs (SBHMMs), improves traditional HMM by reduction of error from 17% to 70% in American Sign Language recognition (Yin et al., 2008).

IV. INDIAN SIGN LANGUAGE RECOGNITION

The Digital image processing techniques and artificial neural network were employed in recognising finger spelling in ISL (Adithya et al., 2013). In an approach, Otsu’s algorithm was employed in segmentation and Scale Invariant Feature Transform and Histogram of Oriented Gradient were combined to evolve the feature vector. An accuracy level of 93% was achieved by this approach (Agrawal et al., 2012). The Artificial intelligence possibilities were utilised to convert the clerk’s speech to signs played by a virtual 3D animated human character playing the signs corresponds to the speech in Malayalam (language of Kerala state, India) to ISL (Anuja et al., 2009).

The number of finger tips and their distance from centroid is utilised together with PCA for Indian sign language recognition and high accuracy is achieved by this approach (Deora et al., 2012). In an attempt, Indian Sign Language (ISL) is recognised with 96% accuracy and translated to normal text. The Hu invariant moment and a multi-class Support Vector Machine (MSVM) is employed in the recognition process (Dixit and Jalal, 2013). An attempt has been made by extracting Maximum Curvature Points (MCPs) as key frames resulted in high accuracy for Indian Sign Language (ISL) (Geetha and Aswathi, 2013).
REFERENCES


