
A Genetic Algorithm Based Average Percentage of
Statement Coverage Technique for Test Case Ordering

Atul kumar Pal1, Makul Mahajan2

1 Student, Lovely Professional University,
2 Assistant Professor, Lovely Professional University

Abstract: This paper address the research in the field of test
case ordering in regression testing. The idea is to improve
APSC by applying our proposed approach adaptive genetic
algorithm hybrid approach for test case ordering in regression
testing. In this research basically we focused on test-case
ordering and statement coverage by Applying adaptive
genetic algorithm hybrid approach and measure APSC
(Average Percentage Statement Coverage) and GA (Genetic
Algorithm). In this research we take hundred test-case of
apache server and evaluate hundred test-cases. We used java
eclipse environment for coding and run the test cases. First we
apply APSC (Average Percentage of statement coverage)
technique for ordering test-cases as well measure the APSC.
We got good results but this technique not sufficient to cover
maximum statement. So, we hybrid the adaptive and Genetic
Algorithm approach to measure the APSC and run all test-
cases until all statement not covered.. Our approach gives us
better results than single APSC adaptive technique.

Keywords: Regression Testing, Test case
prioritization/ordering, Genetic Algorithm , APSC(Average
Percentage of statement coverage) ,Adaptive Approach
,APFD(Average Percentage of Fault Detection),Fitness, Parent
Generation , Crossover , Mutation.

INTRODUCTION
Software engineering is the application of a systematic,
disciplined, quantifiable approach to the development,
operation, and maintenance of software .It is also defined
as a systematic approach to the analysis, design,
assessment, implementation, testing, maintenance and
reengineering of software .Software testing is an important
activity in software development as well in software
maintenance and quality assurance. It recognizes defects
and problems, and evaluates and improves product quality.
Software testing has been a serious research topic since the
late 1960s. Software testing may represent more than 40%-
60% of a software development budget. Moreover,
approximately 50% of the elapsed time is expended in
testing software being developed. Software maintenance
refers to the modifications of software after delivery. Other
terms suggested for maintenance are software support,
software renovation, continuation engineering and software
evolution [9]. To discover blames and issues in the item
outline as right on time as would be prudent, trying is done
in numerous stages. Software Testing Play an important
role in assuring the software quality of the system.
However many research papers proved and state that more
than half of cost in software is used in testing and
maintenance of the software. So many researchers already
had done a lot research in to reducing the cost of software
testing. But as well we have need to take care of their will

be no effect on the quality while we apply many approach
in reducing the cost of testing ex: we can detect fault
properly, we can cover overall statements of the code, we
can provide ordering to each test case in which sequence
we run test case that we cover all statements of the code.
In this research we focused on Adaptive approach and
extend this approach by applying Genetic Algorithms
through this approach we found that we got better result of
APSC then existing approaches. The adaptive test-case
ordering approach computes the fault-detection capability
of each test case based on the faulty potential (which
measures to what extent a statement is likely to contain
faults) of its executed statements. During regression testing,
as soon as a selected test case finishes running, the adaptive
approach modifies the faulty potential of all the statements
executed by this test case based on its output, and then
modifies the fault detection capability of all unselected test
cases. The adaptive approach selects a test case with the
largest fault-detection capability and programmers run the
selected test case. The preceding process repeats until all
the test cases are selected and run. Generally speaking, the
adaptive approach schedules test cases and executes test
cases simultaneously. This is also the main difference
between the adaptive approach and existing test-case
prioritization approaches.
In this research we focus to improve the efficiency in
average percentage of statement coverage technique. We
improved the APSC of adaptive approach by applying our
proposed approach Adaptive genetic algorithm hybrid
approach.
In this paper we discuss our research work in five section.
In Section I we discus on related work. In Section II we
discus on our Problem Formulation . In Section III we
discus on our Research Methodology . In Section IV we
discuss on our Results . In Section V we discuss on
Conclusion and Future Scope.

1. RELATED WORK

Dan Hao et al.(2013) says that prioritization of test-case is to
arrange the execution order of test cases like that we can
concentrate on some destinations like ahead of schedule
flaw identification in the code before execute the
experiments. They connected the versatile approach in
existing experiment prioritization approach. The proposed
methodology separate the procedure of experiment
prioritization and the execution transform by giving the
execution request to every single test case before run the
experiments. As the implementation data of adjusted code is
not available for existing experiment prioritization these
methodologies rely on upon the past Program execution data

Atul kumar Pal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2698-2705

www.ijcsit.com 2698

before changes in the Program. To conquer this issue, they
show a multipurpose investigate prioritization approach,
which chooses the implementation request of experiments at
the same time amid the execution of experiments. The
versatile methodology chooses experiments in light of their
flaw identification ability, which is computed in view of the
produce of chose experiments. When an experiment is
chosen and runs, the deficiency recognition ability of every
unselected experiment is changed by yield of the most recent
chose experiment. To assess their proposed methodology
they perform this methodology on eight C language
Program and four java language Program. Their
experimental results prove the Adaptive approach is
significantly better than the existing test case prioritization.
In figure 1: comparison of both approach is shown [3].

Figure 1: Comparison between Test case prioritization

approach and adaptive approach.[3]

Yu-Chi Huang et al.(2011) give brief history detail on test-
case prioritization technique for regression testing and
applied Genetic Algorithms process to cover statement of
the code . They perceived that during testing, the
experiment is a couple of data and expected yield, and
various experiments will be executed either successively or
haphazardly. The procedures of experiment prioritization
generally timetable experiments for relapse testing in a
request that endeavors to expand the proficiency. In any
case, the expense of experiments and the strictness of
shortcomings are generally shifted. In their paper, they
propose a method of expense aware experiment
prioritization taking into account the utilization of past
records. They accumulate the past records from the most
recent relapse testing and afterward propose a hereditary
calculation to choose the best request. Some very much
requested analyses are performed to assess the viability of
our proposed system. Assessment results show that their
proposed methodology has enhanced the deficiency
discovery adequacy. It can likewise been discovered that
organizing experiments in light of their authentic data can
give high test adequacy amid testing [27].

2. PROBLEM FORMULATION
The existing test-case ordering approaches Dan Hao et
al.[23] present an adaptive test-case prioritization approach,
which determines the implementation order of test cases
concurrently during the execution of test cases. In
particular, the adaptive approach selects test cases based on
their fault detection capability, which is calculated based on
the output of selected test cases. As soon as a test case is
selected and runs, the fault-detection capability of each
unselected test case is modified according to the output of
the latest selected test case. The adaptive approach is better
than the additional approach on some subjects (e.g, replace
and schedule).
When we apply this approach by taking hundred apache
server test cases in java. we found that only 31 test cases
cover near about 98 percent statements coverage but what
about left test cases how we provide them order that we can
cover maximum statements, so to improve this problem we
applied Genetic Algorithm approach with adaptive
approach on left test cases only and we found that this
Adaptive Genetic Algorithm is better than simple adaptive
approach we cover 99.6 percentage approx. statements
cover by our proposed approach .
Figure2 shows that how we reach towards this problem this
flow diagram represent the our work process from
beginning of the research .

Figure 2: Flow chart to reach the problem in research.

3. RESEARCH METHODOLOGY

Our Research Methodology is basically the extension of
adaptive approach in which we merge the genetic algorithm
and we form new algorithm and we give that algorithm
name is Adaptive Genetic Hybrid algorithm. Figure 3 our
Proposed algorithm from step 1 to step 18 the adaptive
approach work done from step 19 we apply genetic
algorithm. Step 21 we take left test cases as Input those
are left after adaptive approach and on left test cases we
apply genetic algorithm. From step 31 we apply the process
to measure the APSC(Average Percentage of Statement
Coverage).

Atul kumar Pal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2698-2705

www.ijcsit.com 2699

Algorithm of Adaptive Genetic Hybrid proposed
Approach

Input: Test Suite T
Output: Tgreatest(A test case which has largest fitness value in
population of final generation).
 APSC (Measure Adaptive Percentage of Statement
Coverage)
Declaration:
Ts: represent the latest selected test case .
N : number of test cases
M : statements
P: population size .
G: number of generation.
Cp: Crossover Point.
Mp : Mutation Point.
Ltc : Left Test cases after Adaptive Approach ordering .
Adaptive Process :

1. Begin
2. for each test case t in T.
3. calculate initial priority(t).
4. End for .
5. Select the test case (ts) with the largest priority in T.
6. Add ts to T’
7. T ← T-{ts}.
8. Run ts.
9. While T is not empty do.
10. For each test case t in T.
11. Change priority(t) based on the output of ts.
12. End for
13. Select the test case(ts) with largest priority which cover

statement.
14. Add ts to T’.
15. T ← T-{ts}.
16. Run ts.
17. End while
18. Return Ltc : left test case from T those not cover

statement.
19. Genetic Algorithm Process :
20. Begin :
21. Input: Ltc
22. P1 ← generate population (Ltc,P,fl,fsl).
23. For i=1 to g.
24. F1 ← evaluateFitness (Pi, tc,fl,fsl)
25. Pi+1 ← addTwoBest(Fi, Pi)

26. For j=3 to P.
27. Parent1 ← RandomSelectParent(Pi)
28. Parent2 ← RandomSelectParent(Pi)
29. Child1,child2 ← CrossOver(Parent1 , Parent2,Cp)
30. Child1 ← Mutation(Child1, mp)
31. Child2 ← Mutation(Child2, mp)
32. Pi+1← addChildren(Child1,child2)
33. Fg+1 ← EvaluateFitness(Pg+1,tc,fl,fsl)
34. Tgreatest ← SelectBest Child(Fg+1,Pg+1)
35. Return Tgreatest.
36. Measure APSC :
37. C←n*m (n←Lts)
38. N2←2*n
39. S1←sum/c (sum=0)
40. S2←1/(2*n)
41. Apsc←1-(S1+S2)
42. Apsc←Apsc*100
43. Return Apsc

Figure 3: Algorithm1 (Adaptive Genetic Hybrid Algorithm)

In figure 4 represent the flow chart of our prosed algorithm
the gray shaded area in flow chart represent the adaptive
approach and rest part applied by us that is genetic
algorithm .

Figure 4 : Flow Chart of our Proposed Approach(Research

Methodology)

Adaptive Genetic Algorithm Hybrid proposed test-case
prioritization approach in this approach we ordering the
test case and find the average percentage of statement
coverage for hundred test cases in java . First we measure
the APSC of adaptive approach and ordering the test case.
In adaptive approach we order the test case like until our
statement not cover if test cases left or we can say failure
test cases those are unable to cover any statement its means
the statement coverage is not done perfectly . We take that
Left test cases after applying adaptive approach and
perform genetic algorithm on these test case. In Genetic
algorithm we apply three main techniques to order the test
case like this our APSC improved as compared to adaptive
approach. We apply these techniques in genetic algorithm
to giving the order to each test case
3.1 Adaptive Approach
3.2 Parent Generation
3.3 Cross Over
3.4 Mutation
3.5 Measure APSC
3.6. Execution time

Atul kumar Pal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2698-2705

www.ijcsit.com 2700

3.1 Adaptive Approach
 In this Research Methodology, we first present the
adaptive process of the existing test-case prioritization
approach by howing its basic difference with our proposed
approach adaptive genetic hybrid approach and then give
the details of the adaptive genetic hybrid approach in below
sections. For ease of exhibition, we present the adaptive
genetic hybrid test case ordering approach in terms of
statement coverage, which can also be implemented on
other adaptive approach also. In figure 8: the dark area of
flow chart represent the adaptive approach methodology
the rest for flow chart is further methodology of Genetic
algorithm. The overall flowchart figure 3. Represent the our
adaptive genetic hybrid approach methodology.
 We take hundred apache server test cases Antloader
package of test cases in java IDE Eclipse.
First we set each test case priority 1.
Priority (t) = Ʃ Potential(S) ------------ (1)
Where potential(s) represent how likely statement covered
by the existing selected test case. Potential(S) of any
statement S in which scope [0,1].
 If test case(t’) passed then,
 Potential(s) , s is not executed by t’.

Potential(S) = Potential(s)*q , s is executed by t’

 If test case(t’) failed then,

 Potential(s)*P , s is executed by t’

P and q are two non-negative constants whose values are
between 0 and 1. In our implementation process while all
test case priority set 1 in initial than, we run all test case
those test case cover statement we provide “G” to that test
case. Those test case gain maximum number of G their
priority must be high. so according to this process we found
that in this approach by running hundred test cases few test
cases cover the statements on that bases we calculate APSC
of this approach.
The effect of passed/failed output on the () of any
statement is measured by / in the earlier equation.
Moreover, when p=q=0, the adaptive approach becomes the
additional statement-coverage based test-case prioritization
approach, whereas when p=q=1, the adaptive approach
becomes the total statement-coverage based test case
ordering approach. That is, the total or additional
statement-coverage based test-case ordering approach can
be viewed as an instance of the adaptive approach. The
existing research on test-case prioritization has fully
evaluated the effectiveness of the total approach and the
additional approach. Although and in the preceding
equation are two independent variables, to facilitate
evaluation of the proposed adaptive approach, currently we
assume + = 1 in this research and evaluate the
effectiveness of the adaptive approach by setting q=0, 0.2,
0.4, 0.6, 0.8, or 1,
Than we calculate APSC for adaptive approach by applying
APSC formula .

3.2 Parent Generation : This is the first step of genetic
algorithm of parent selection we apply this process only on
the remaining test cases after adaptive approach for the
selection of five top parents we set priority to each test case
according to the statement coverage we calculate fitness In
our proposed algorithm 1 Pg + 1, is produced, the fitness
value of each chromosome is determined on line 33. In
Algorithm1 , and the chromosome whose fitness value is the
greatest is selected to be the test order. We select parent
randomly Algorithm 2 show that how parent selection
process going on.

Algorithm 2: Random Parent Selection Algorithm
Input : Pi the population of the ith generation.
output : Parent chromosome selection
1. FitnessSum← calculate fitnessSum of chromosome(Pi)
2. r← generate random number(FitnessSum)
3. for K=1 to P
4. r← r-fitof Chromosomek
5. if r < 0
6. Break
7. Parent← chromosomek
8. Return Parent

Figure 5: Random Parent Selection Algorithm.

As the above Figure 5 Algorithm 2 states that first we input
the population of the rest of test cases after adaptive
approach in1st generation we apply five generation in our
experiment. According to above algorithm first we take
randomly chromosomes. We take two highest priority test
cases from previous adaptive approach as Parent1 and
Parent 2. While we calculate the fitness and the highest
fitness test case become the next parents of nest generation.
Like this process we got five highest parents with high
fitness value. After performing first generation we not
consider that highest parent fitness in second generation.
Same like this after getting second highest fitness value we
don’t consider that test case in third so on until we not
complete all process for each test case.

3.3 Cross Over : After completion of first step of Genetic
algorithm we get two Parents of high fitness value now we
will perform cross over operation in our proposed approach.
Crossover is ordinarily a recombination transform that
consolidates the portions of one chromosome with the
sections of another. The new chromosomes framed by hybrid
acquire a few qualities from both folks. The calculation of
the hybrid administrator is given in Fig. 3.5. The calculation
is the single point hybrid. In the first place, an arbitrary
number, r, which extends from 0 to 100, is created on line 1.
On the off chance that r is not exactly the hybrid likelihood,
cp, the recombination procedure will start on line 3.
Something else, the kid is the copy of the guardian. At the
point when hybrid is connected, the calculation chooses
hybrid focuses, p1 and p2, for parent1 and parent2,
separately, on lines 3 and 4. On lines 5 and 6, the
subsequences before the hybrid point are then duplicated

Atul kumar Pal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2698-2705

www.ijcsit.com 2701

from both folks. The joined capacity on lines 7 and 8 creates
a tyke by consolidating the duplicated subsequence of one
guardian with the qualities of another guardian that are not in
the replicated subsequence.

Input: Parent1 : selective Chromosome from population
 Parent2 : Another Selective chromosome from

population
 Cp : CrossOver Point
Output: Children1, Children2 (two new chromosomes
produced by algorithm)
1. n← generateRandomNumber(100)
2. if n < Cp
3. P1 ← select Crosspoint(Parent1)
4. P2← select CrossPoint(Parent2)
5. Segment1 ← fragment(P1,Parent1)
6. Segment2 ← fragment(P2,Parent2)
7. children1← join(Segment1 , Parent2)
8. children2← join(Segment2 , Parent1)
9. else
10. children1← Parent1

11. children2← Parent2

12. Return children1 children2

Figure 6: Algorithm 3 Cross over

Figure 7: Example of Crossover

For example, considering the chromosomes in Fig 7
demonstrates their hybrid process. The hybrid purposes of
An and B are at positions 2 and 3, individually. Child1 gets
the subsequence before the hybrid point from An, and the
rest from B. Since 6 and 7, which are qualities of B, are
additionally in the subsequence duplicated from A, they are
not added to the child1. So also, child2 acquires the
subsequence before the hybrid point from B, and the
qualities that are not in that subsequence from A.

3.3.4 Mutation: Mutation is performed on the chromosomes
got by the hybrid process First, the transformation (childrenc,
mp) creates a number, n, which goes from 0 to 100 on line 1.
On the off chance that n is not exactly the change likelihood,
mp, the calculation chooses two qualities of childrenc
arbitrarily and swap their positions, as demonstrated in Fig.8.
Something else, the transformation administrator would not
be connected.

Figure 8 : Example of Mutation

Algorithm 4: Mutation
Input: Childrenc chromosome produced by crossover .
 Mp Mutation Point
Output: Childrenm , chromosome produced by algorithm
1. N← GenerateRandomNumber(100)
2. if N<Mp

3. Mp1 , Mp2 ←select Mutation Points
4.Childrenm ← SwapPosition(Mp1 , Mp2, Childrenc)
5. else
6.Childrenm← Childrenc

7. Return Childrenm

Figure 9: Algorithm 4 Mutation Algorithm

In Mutation phase of genetic algorithm paper we take both
children chromosome generated by the crossover operator.
We show in figure 3.8, how the children change after
applying mutation operator. First we take children1 and
randomly generate number for two different mutation points
. as in example Mp1 and Mp2 indicate gene 7 and 5 in above
example. We simply swap these genes and got childrenm1 , and

Childrenm2 . same process going on for each chromosomes
we received after cross over operator/phase . The mutation
(childc, mp) also gives those test cases a chance to get a
higher priority for test case ordering .
3.5 Measure APSC: The fifth step of our methodology is
measuring the average percentage of statement coverage
which will show our experimental work, the result of APSC
represent how our approach is better than adaptive approach.
The general formula to measure APSC.
APSC = 1 - Ts1+Ts2 +……….. Tsm + 1/2*n
 n*m
but in our experimental coding we apply this formula like .
 APSC = 1 – sum/c + 1/ 2*n
Where , n= number of test case (Ltc left test cases after
adaptive approach)
 M= statements
 C= n*m
 S1 = sum/n*m , sum/C .
 S2 = 1/(2*n)
APSC= 1-S1 +S2 .

We take all high order test cases to evaluate the apsc for our
proposed approach, we tak summation of each test-case
priority calculate by our algorithm 1. On the basis of that
prority reading we measure APSC and our results shows that
our proposed approach is better than the previous adaptive
approach. We are able to increase the efficiency of average
percentage of statement coverage. Our results show in
graphical form in the chapter Result and Analysis.

Atul kumar Pal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2698-2705

www.ijcsit.com 2702

3.6 Execution time
The last parameter measures in this research is execution
time .we calculate how much execution time should be taken
by existing approach and proposed approach .and we found
that execution time is high in our proposed approach because
this is generally clear as well it should take more time than
adaptive approach because we execute adaptive approach as
well genetic algorithm process in which five parent
generation , crossover and mutation operators processing in
our proposed approach .we also found that execution time
depend on the system configuration also . while we process
this approach on high configuration system it take less time
while we process on law configuration system it take a lot of
time . so we conclude this parameter in our future scope we
can improve APSC as well time execution if we apply any
other approach/technique further.

4. RESULT AND GRAPHS
In this chapter we will discuss about the result obtained by
us for both existing approach as well our proposed
approach. In existing approach of adaptive test-case
prioritization we calculate APSC (average percentage of
statement coverage) and execution time also by vary the q
and p value .
The existing research on test-case prioritization has fully
evaluated the effectiveness of the total approach and the
additional approach. Although and in the preceding
equation are two independent variables, to facilitate
evaluation of the proposed adaptive approach, currently we
assume + = 1 in this research we evaluate the
effectiveness of the adaptive approach and proposed
approach by setting q=0, 0.2, 0.4, 0.6, 0.8, and 1 . We focus
on Q factor value just because the q factor value multiply
only when test case is pass. Same like that we calculate
the execution time for the adaptive approach and proposed
approach by setting q=0, 0.2, 0.4, 0.6, 0.8, and 1 .

As it shown in table number 4.1 while we take different p,
q factor values we get different average percentage of
statement coverage and execution time. We found that the
highest APSC is at q=0.2, p=0.8 value while the minimum
time taken at q=0.4, p=0.6. so from this table we analyses
we can change the factor value according to our need in
which we have need to focus. If our focus on to statement
coverage we take best value of p, q in which we get highest
APSC. While we have needed to focus on execution time
we will select p, q value according to the low executions
time value.

Figure 10, represent the value of APSC on Y-axis while
there is different Q factor value on x-axis. While in figure 11
the graph resent the execution time take by adaptive
approach while we measure APSC.

Figure 10: Graph of APSC according to Different Q values

in Adaptive Approach.

Figure 11: Graph of Execution Time according to

Different Q values in Adaptive Approach

After measuring the APSC and execution time for adaptive
approach. Than we measure the APSC and execution time
for our proposed approach adaptive genetic hybrid
approach. In Table number 4.2 the values of APSC and
Execution time date at different Q and P factors. On the
basis of this data set figure 12 represent the graph of APSC
values on y axis and different Q factor values on x-axsis.
Similarly figure 13 represent the execution time value on
y-axsis and different q factor value on x-axsis.

Atul kumar Pal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2698-2705

www.ijcsit.com 2703

Figure 12: Graph of APSC according to Different Q values

in proposed Approach

Figure 13: Graph of Execution Time according to

Different Q values in Proposed Approach.

In the above figure and tables we represent the separate
outcomes from both approach the existing adaptive
approach as well our prosed approach. After that we
compare the both approach on the basis of APSC as well
time execution . In Figure 14 it shows that the comparison
between the adaptive and our proposed approach. The red
color bar indicate the adaptive approach while green bar
represent our proposed approach and it is clear represented
by graph our approach is better than existing adaptive
technique in this research basically we focus only on APSC
rather than execution time.While in figure 15 the line graph
represent the time taken comparison between the existing

approach as well our proposed approach red line in graph
represent the time taken by adaptive approach and green
line represent the time taken by our proposed approach.

Figure 14: APSC Comparison of Adaptive and proposed

Approach.

Figure15 : Comparison of Execution Time among Adaptive

and Proposed Approach.

5. CONCLUSION AND FUTURE SCOPE
In this Research we proposed an approach that improves
APSC (average percentage of statement coverage). Our work
is extension into the adaptive approach for APFD (average
percentage of fault detection) into adaptive genetic algorithm
hybrid approach from which we conclude that our proposed
approach improve the APSC.We take hundred java test cases
package of apache server to evaluate our approach. First we
apply adaptive approach and calculate APSC. Than we apply
our proposed algorithm adaptive genetic algorithm hybrid
approach than we calculate APSC than we found that our
approach gives better results than adaptive approach for
APSC only. Basically in this research we focused on APSC
only but while we calculate Execution time for both
approach we found that our proposed approach take large
time to execute as compare to adaptive approach. But as the
tester view our main aim to cover all statements of the code
for better quality. So, we considering this work as our next
future work and we believe that if we apply any other
technique we can improve execution time as well APSC
together. And we take small data set in our research while in
future we take large data set of test cases for efficient results.

Atul kumar Pal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2698-2705

www.ijcsit.com 2704

REFERENCES
[1]. A.B Taha, S.M. Thebaut, and S.S. Liu.,”An approach to software

fault localization and revalidation based on incremental dat flow
analysis”. in proceeding of the 13th Annual International Computer
Software and Applications Conference..

[2] A. Marback, H. Do, and N. Ehresmann, “An effective regression
testing approach for PHP web applications,” in Proceedings of the
International Conference on Software Testing, Verification and
Validation, Apr. 2012, pp. 221–230.

[3] Dan Hao, Xu Zhao, “Adaptive Test-Case Prioritization Guided by
Output Inspection” 37th Annual International Computer Software
and Applications Conference (COMPSAC 2013), 22-26 July 2013,
pages 169-179, Tokyo, Japan

[4] D.Hoffman and C.Brealey. “Module test case generation” in
proceedings of the Third Workshop on Software Testing, Analysis,
and Verification, pages 97-102, December 1989.

[5] G. Rothermel and M. J. Harrold, Analyzing Regression Test
Selection Techniques, IEEE Transactions on Software Engineering,
V.22, no. 8, August 1996, pages 529-551.

[6] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizingtest cases for regression testing,” IEEE Transactions on
Software Engineering, vol. 27, no. 10, pp. 929–948, October 2001.

[7] http://www.ehow.com/facts_5835705_difference-between-operand-
operator.html

[8] J. Hartmann and D.J. Robson.” Revalidation during the software
maintenance phase”in Proceeding of the conference on Software
Maintenance.

[9] J.Ziegler, J.M. Grasso, and L.G. Burgermeister.” An Ada based real-
time closed-loop integration and regression test tool”. in Proceedings
of the Conference on Software Maintenance -1989, pages 81-90,
October 1989

[10] J. Offutt, J. Pan, and J. M. Voas.” Procedures for reducing the size of
coverage-based test sets” in Proceedings of the Twelfth
International Conference on Testing Computer Software, pages 111–
123, June 1995.

[11] Keith H. Bennett and V_aclav Rajlich. “Software maintenance and
evolution: a roadmap.” in Proceedings of the International
Conference on Software Engineering (ICSE'00), pages 73{87,
2000}.

[12] K. Onoma, W-T. Tsai, M. Poonawala, and H.
Suganuma.”Regression testing in an industrial environment”.

[13] Mithun Acharya ,”Configuration Selection Using Code Change
Impact Analysis for Regression Testing”, 28th IEEE International
Conference on Software Maintenance (ICSM), 2012

[14] Md. Hossain , “Regression Testing for Web Applications Using
Reusable Constraint Values ,” IEEE International Conference on
Software Testing, Verification, and Validation Workshops , 2014.

[15] Md. Junaid Arafeen and Hyunsook , “Test Case Prioritization Using
Requirements-Based Clustering “, IEEE Sixth International
Conference on Software Testing, Verification and Validation ,2013

[16] Mitchell Melanie, Fifth printing, 1999 An Introduction to Genetic
Algorithms , A Bradford Book The MIT Press , Cambridge,
Massachusetts • London, England

[17] M.J. Harrold, R. Gupta, and M.L. Soffa. “A methodology for
controlling the size of a test suite. ACM Transactions on Software
Engineering and Methodology”.

[18] Nicolas Frechette, “Regression Test Reduction for Object-Oriented
Software: A Control Call Graph Based Technique and Associated
Tool” , Hindawi Publishing Corporation ISRN Software Engineering
Volume 2013, Article ID 420394, 10 pages

[19] P.A Brown and D. Hoffman. “The application of module regression
testing at TRIUMF. Nuclear Instruments and Methods in Pysics
Research”, Section A, . A293(1-2):377-381, August 1990.

[20] Prof. A. Ananda Rao and Kiran Kumar J “An Approach to Cost
Effective Regression Testing in Black-BoxTesting Environment
“IJCSI international journal of computer science issues vol.8 issue
3,No. 1 may 2011

[21] Regression Test Selection by Exclusion ,Durham E-Theses, Durham
University.

[22] R. Lewis, D.w. Beck, and J.Hartmann. “Assay – a tool to support
regression testing”. In ESEC’ 89.2nd European Software
Engineering Conference Proceedings, pages 487-496,

[23] S. Elbaum, A. G. Malishevsky, and G. Rothermel. “Test case
prioritization: A family of empirical studies.” IEEE Transactions on
Software Engineering, 28(2):159–182,February 2002.

[24] Swarnendu Biswas , “Regression Test Selection Techniques: A
Survey” , Informatica 35 (2011) 289–321 289

[25] http://www.chartgo.com
[26] Xuan Lin . “Regression Testing in Research And Practice”,

University of Nebraska, Lincoln1-402-472-4058
[27] Yu-Chi Huang “A history-based cost-cognizant test case

prioritization technique in regression testing , The Journal of
Systems and Software 85 (2012) 626– 637.

Atul kumar Pal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2698-2705

www.ijcsit.com 2705

