
A Survey on Web Authentication Methods for Web
Applications

Ch.Jhansi Rani 1
Asst. Professor/Dept of CSE

KKR&KSR Institute of Technology & Sciences
Guntur,A.P

SK.Shammi Munnisa 2

Asst. Professor/Dept of CSE
KKR&KSR Institute of Technology & Sciences

Guntur,A.P

Abstract-One of the common problems facing our web
application user is the thorny issue of trust and security. The
vast majority of consumers are concerned about the safety of
their credit card and personal details. People simply don't
trust the Web, fearing that their transactions might not be
safe. Not only are consumers concerned, the prospect of online
credit card fraud also has an adverse effect on potential online
shoppers. Increased trust in the safety of online dealings has
numerous benefits, of which increased revenue and
profitability is the most important. There are real challenges–
and significant opportunities – for e- tailers like you to
deliver the same level of trust and personalization over the
Internet as offered by real shops. This paper presents the
critical role of authentication for web application and
different types of authentication methods as well as the
business benefits which flow from creating trust on the web
application.

Keywords: role of Authentication, Authentication in web
applications

1. INTRODUCTION

Web browsers can connect to Web Logic Server over either
a Hyper Text Transfer Protocol (HTTP) port or an HTTP
with SSL (HTTPS) port. The benefits of using an HTTPS
port versus an HTTP port are two-fold. With HTTPS
connections:

i. All communication on the network between the
Web browser and the server is
encrypted. None of the communication, including
the user name and password, is in clear text.

ii. As a minimum authentication requirement, the
server is required to present a digital certificate to
the Web browser client to prove its identity.

If the server is configured for two-way SSL authentication,
both the server and client are required to present a digital
certificate to each other to prove their identity.

2. WEB AUTHENTICATION METHODS:
HYPER TEXT TRANSFER PROTOCOL AUTHENTICATION
HTTP authentication is a method for the client to provide a
username and a password when making a request.
This is the simplest possible way to enforce access control
as it doesn't require cookies, sessions or anything else. To
use this, the client has to send the Authorization header
along with every request it makes. The username and
password are not encrypted, but constructed this way

i. username and password are concatenated into a
single string: username: password

ii. this string is encoded with Base64

iii. the Basic keyword is put before this encoded value
Example for a user named rani with password sec

The drawbacks of using HTTP Basic authentication
i. The username and password are sent with every

request, potentially exposing them - even if sent
via a secure connection

ii. connected to SSL/TLS, if a website uses weak
encryption, or an attacker can break it, the
usernames and passwords will be exposed
immediately

iii. there is no way to log out the user using Basic
auth

iv. Expiration of credentials is not trivial - you have
to ask the user to change password to do so

 USER NAME AND PASSWORD AUTHENTICATION
Web Logic Server performs user name and password
authentication when users use a Web browser to connect to
the server via the HTTP port. In this scenario, the browser
and an instance of Web Logic Server interact in the
following manner to authenticate a user
1. A user invokes a Web Logic resource in Web Logic

Server by entering the URL for that resource in a Web
browser. The http URL contains the HTTP listen port,
for example, http://myserver:7001.

The Web server in Web Logic Server receives the
request.

2. The Web server determines whether the Web Logic
resource is protected by a security policy. If the Web
Logic resource is protected, the Web server uses the
established HTTP connection to request a user name
and password from the user.

3. When the user’s Web browser receives the request
from the Web server, it prompts the user for a user
name and password.

4. The Web browser sends the request to the Web server
again, along with the user name and password.

5. The Web server forwards the request to the Web server
plug-in. Web Logic Server provides the following
plug-ins for Web servers:
i. Apache-Web Logic Server plug-in

ii. Netscape Server Application Programming
Interface (NSAPI)

iii. Internet Information Server Application
Programming Interface (ISAPI)

iv. The Web server plug-in performs authentication
by sending the request, via the HTTP protocol, to

Jhansi Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1678-1680

www.ijcsit.com 1678

Web Logic Server, along with the authentication
data (user name and password) received from the
user.

6. Upon successful authentication, Web Logic Server
proceeds to determine whether the user is authorized to
access the Web Logic resource.

7. Before invoking a method on the Web Logic resource,
the Web Logic Server instance performs a security
authorization check. During this check, the server
security extracts the user’s credentials from the
security context, determines the user’s security role,
compares the user’s security role to the security policy
for the requested WebLogic resource, and verifies that
the user is authorized to invoke the method on the
WebLogic resource.

8. If authorization succeeds, the server fulfills the request.
Figure 1 Secure Login for Web Browsers

The drawbacks of using username/password
Authentication:

i. Password data stores as a weak point
ii. Passwords should be reset early and often

iii. Good passwords can be hard to
remember

COOKIES
When a server receives an HTTP request in the response, it
can send a Set-Cookie header. The browser puts it into a
cookie jar, and the cookie will be sent along with every
request made to the same origin in the Cookie HTTP
header.
To use cookies for authentication purposes, there are a few
key principles that one must follow.

Always use Http Only cookies
To mitigate the possibility of XSS attacks always use the
Http Only flag when setting cookies. This way they won't
show up in document cookies.

Always use signed cookies
With signed cookies, a server can tell if a cookie was
modified by the client.
The drawbacks of using Cookie Authentication:

i. Need to make extra effort to mitigate CSRF
attacks

ii. Incompatibility with REST - as it introduces a
state into a stateless protocol

TOKENS
Nowadays JWT (JSON Web Token) is everywhere - still it
is worth taking a look on potential security issues.
First let's see what JWT is!
JWT consists of three parts:

i. Header, containing the type of the token and the
hashing algorithm

ii. Payload, containing the claims
iii. Signature, which can be calculated as follows if

you chose HMAC SHA256: HMACSHA256(
base64UrlEncode(header) + "." +
base64UrlEncode(payload), secret)

iv. The drawbacks of using Tokens Authentication:
v. Need to make extra effort to mitigate XSS attacks

DIGITAL SIGNATURES
Either using cookies or tokens, if the transport layer for
whatever reason gets exposed your credentials are easy to
access - and with a token or cookie the attacker can act like
the real user.
A possible way to solve this - at least when we are talking
about APIs and not the browser is to sign each request.
How does that work?
When a consumer of an API makes a request it has to sign
it, meaning it has to create a hash from the entire request
using a private key. For that hash calculation you may use:

i. HTTP method
ii. Path of the request

iii. HTTP headers
iv. Checksum of the HTTP payload
v. and a private key to create the hash

To make it work, both the consumer of the API and the
provider have to have the same private key. Once you have
the signature, you have to add it to the request, either in
query strings or HTTP headers. Also, a date should be
added as well, so you can define an expiration date.
The drawback of using Signature Authentication:

i. cannot use in the browser / client, only between
API

ONE-TIME PASSWORDS
One-Time passwords algorithms generate a one-time
password with a shared secret and either the current time or
a counter:

i. Time-based One-time Password Algorithm, based
on the current time,

ii. HMAC-based One-time Password Algorithm,
based on a counter.

These methods are used in applications that leverage two-
factor authentication: a user enters the username and
password then both the server and the client generates a
one-time password .implementing this using not p is
relatively easy.
The drawbacks of using One Time Password
Authentication:

i. with the shared-secret (if stolen) user tokens can
be emulated

ii. because clients can be stolen / go wrong every
real-time application have methods to bypass this,
like an email reset that adds additional attack
vectors to the application

Jhansi Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1678-1680

www.ijcsit.com 1679

CONCLUSION

To achieve this confidentiality, authentication of web is
necessary. Many schemes proposed on authentication and
some of the significant ones are discussed in this paper.
While most authentication schemes are focus only on the
security while other major compelling challenges for
authentication is to provide proper scalability. It is
therefore essential from the literature that an effective
implicit authentication method which minimizes the
computation cost and verification and eliminates the need
of shared key if you have to support a web application only,
either cookies or tokens are fine - for cookies think about
XSRF, for JWT take care of XSS.If you have to support
both a web application and a mobile client, go with an API
that supports token-based authentication. If you are
building APIs that communicate with each other, go with
request signing.

REFERENCES
[1] Mudassar Raza, Muhammad Iqbal, Muhammad Sharif and Waqas

Haider, “A Survey of Password Attacks and Comparative Analysis
on Methods for Secure Authentication”, World Applied Sciences
Journal, vol. 19, pp. 439-444, Jan. 2012.

[2] Web Application Security Statistics,
“http://projects.webappsec.org/w/page/13246989/WebApplication
SecurityStatistics.”

[3] C. Onwubiko and A. P. Lenaghan, "Managing Security Threats and
Vulnerabilities for Small to Medium Enterprises", in Proc. IEEE
Intellgienc and Security Informatics, 2007, p. 244-249.

[4] Italo Dacosta, Mustaque Ahamad, Patrick Traynor, "Trust No One
Else: Detecting MITM Attacks Against SSL/TLS Without Third
Parties",in Proc. 17th European Symposium on Research in
Computer Security, Italy, 2012, p. 10-12..

[5] Syverson, P, "A Taxonomy of Replay Attacks", in Proc. CSFW7 '94,
1994, p. 187-191..

[6] MySpace Samy Worm, “http://namb.la/popular/tech.html,” 2005.
[7] Carlisle Adams, Guy-Vincent Jourdan, Jean-Pierre Levac and

François Prevost, "Lightweight protection against brute force log in
attacks on web applications ", in Proc. PST '10, 2010, p. 181-188.

[8] Elie Bursztein, Matthieu Martin, John C. M, "Text-based
CAPTCHA Strengths and Weaknesses", in Proc. CSS '11, 2011, p.
125-138.

[9] Junghyun Nam, Kim-Kwang Raymond Choo, Juryon Paik,
Dongho Won, "An Offline Dictionary Attack against a Three-Party
Key Exchange Protocol", IEEE Communication Lett., Vol. 13, pp.
205-207, Mar. 2009.

[10] Adrian J Duncan, Sadie Creese, Michael Goldsmith, "Insider Attacks
in Cloud Computing", in Proc. TrustCom '12, 2012, p. 857-862.

[11] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross site
request forgery attacks,” in SecureComm’06: 2nd International
Conference on Security and Privacy in Communication Networks,
2006, pp. 1 –10.

[12] A. Jesudoss and N.P. Subramaniam, “A Taxonomy of
Authentication Techniques for Web Services”, International Journal
ofEngineering Research and Technology, Vol. 3 2014, pp. 271-275.

[13] Z. Mao, N. Li, and I. Molloy, “Defeating cross-site request forgery
attacks with browser-enforced authenticity protection,” in FC’09: 13
th International Conference on Financial Cryptography and Data
Security, 2009, pp. 238–255.

[14] Chun-Ying Huang, Shang-PinMa, Kuan-TaChen, "Using one-time
passwords to prevent password phishing attacks", Journal of
Computer and Network Applications, Vol. 34, Issue 4, pp. 1292-
1301, Jul. 2011.

[15] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D.
Song, “A Systematic Analysis of XSS Sanitization in Web
Application Frameworks,” in ESORICS’11: Proc. of 16th European
Symposium on Research in Computer Security, 2011.

Jhansi Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1678-1680

www.ijcsit.com 1680

