
Security Patterns for Web Services Mining Agile
Architectures

A.V.Krishna Prasad1 Dr.S.Ramakrishna2 D.Shravani3
1Associate Professor Department of Computer Science MIPGS Hyderabad, A.P. India

Email: kpvambati@gmail.com
2 Professor Department of Computer Science S.V.University Tirupathi A.P. India

Email: drsramakrishna@yahoo.com
3Research Scholar R.U. Kurnool and Assistant Professor CS MIPGS, Hyderabad A.P. India

Email: sravani.mummadi@yahoo.co.in

Abstract— The importance of the software security has been
profound, since most attacks to software systems are based
on vulnerabilities caused by poorly designed and developed
software. Design flaws account for fifty percent of security
problems and risk analysis plays essential role in solid
security problems. Security Patterns are proposed that offer
the security at the architecture level in analogy to design
patterns. Determination of up to what extent specific
security patterns shield from known STRIDE attacks to
architecture is a major task. In this paper, we want to
validate security patterns approach for architectures, using
Executable UML Model-driven Architecture development
and Layered Security Architecture. These results encourage
the new research area of Web engineering Navigational
Development Technique. Initially we look at authorization
using MDA Executable UMLSec. Finally, we validate this by
implementing security patterns using Agile Modeling.
Index Terms—Layered Security Architectures, Agile
Modeling, Security Patterns, Model Driven Architecture,
Executable UML.

I. INTRODUCTION TO SECURITY PATTERNS FOR SECURITY

ARCHITECTURES

Security has become an important topic for many
software systems. Security Patterns are reusable solutions
to security problems. [1] Although many security patterns
and techniques for using them have been proposed, it is
still difficult to adapt security patterns to each phase of
software development, and integrating them into
Software Architecture design for modeling attack design.
Various Patterns for Security Architectures includes:
Single Access Point, Check Point, Roles, Session, Full
View with Errors, Limited View, Secure Access Layer,
Least Privilege, Journaling and Exit Gracefully. The
importance of software security has been profound, since
most attacks to software systems are based on
vulnerabilities caused by poorly designed and developed
software. Furthermore, the enforcement of security in
software systems at the design phase can reduce the high
cost and effort associated with the introduction of
security during implementation. For this purpose, security
patterns that offer security at the architectural level have
been proposed in analogy to the well-known design
patterns. We need to perform risk analysis of software
systems based on the security patterns that they contain.
The first step is to determine to what extent specific
security patterns shield from known attacks at the design

phase. Successful software and software systems are
directly attributable to elegant and efficient modeling and
design. [2] Models let users, architects and developers
create readily understandable representations of complex
object-oriented systems, before development begins.
Sometimes these representations are visual (for example,
class diagrams) and sometimes they are non-visual (for
instances, use cases). A good analysis model for a portion
of a complex can be abstracted and become an analysis
pattern that can be used in other applications. Their use
can save time and improve the quality of a system. An
important advantage of analysis phase Semantic Analysis
pattern is that they can be combined easily with security
patterns, resulting in authorized applications. The security
defined in the conceptual model can be enforced in the
design model using security patterns at the lower
architectural levels, including security patterns,
components, distribution, and database adapters. We are
currently developing more security patterns, including
patterns for secure brokers and for Web Services as well
as collection of patterns. The combination of multilayer
architectures with patterns provides a framework to
develop a systematic and reusable approach to building
systems that satisfy specific non-functional requirements.
Security patterns embody good design principles and by
using them, the designer is implicitly applying these
principles. Work is needed to add more patterns in each
level and to collect and unify these patterns. We also need
to define guidelines to apply the methodology in a real
environment; for now, we are applying it to specific
examples, such as distributed medical records, Internet
voting, and distributed financial institutions. Refer to
Table 1 which consists of Architectural Styles and Refer
to Table 2 for Security Pattern classification for
Application Architectures.

TABLE 1. ARCHITECTURAL STYLES
Category Architectural Styles

Communication
SOA(Service Oriented Architectures) ,

Message Bus
Deployment Client/Server, N-Tier, 3-Tier

Domain Domain Driven Design

Structure
Component-Based, Object-Oriented,

Layered Architecture

A.V.Krishna Prasad et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (3) , 2010, 185-189

185

TABLE 2. SECURITY PATTERN CLASSIFICATION FOR
APPLICATION ARCHITECTURES

Stakeholder Function Data Test

Architect

Checkpointed
System

Policy Enforcement
Point

Replicated System

Secure Preforking

Single Access Point

Designer

Authenticator

Password

Synchronizer

Exception
Shielding
Subject

Descriptor

Developer
Safe Data

Buffer
Grey
Hats

 Secure Software Architecture using MDA: A basic
premise of Model-Driven Development (MDD) is to
capture all important design information in a set of formal
or semiformal models, which are then automatically kept
consistent by tools. [3] Research community found the
MDD approach to be deficient in terms of modeling the
architectural design rules. It does not offer a satisfactory
solution as to how architectural design rules should be
modeled. As a result developers have to rely on time-
consuming and error-prone manual practices to keep a
system consistent with its architecture. To realize the full
benefits of MDD, find ways of formalizing architectural
design rules, which then allow automatic enforcement of
the architecture on the system model. There exist several
approaches to MDD, such as OMG's MDA, Domain
Specific Modeling (DSM), and Software factories from
Microsoft. MDA (Model-Driven Architecture) prescribes
that three models or sets of models shall be developed as:
The Computationally Independent Model(s) (CIM)
captures the requirements of the system The Platform-
Independent Model(s) (PIM) captures the systems
functionality without considering any particular execution
platform; The Platform-Specific Model(s) (PSM)
combines the specifications in the PIM with the details
that specify how the system uses a particular type of
platform. The PSM is a transformation of the PIM using a
mapping either on the type level or at the instance level.
A type-level mapping maps types of the PIM language to
types of the PSM language. An instance-level mapping
uses marks that represent concepts in the PSM. When a
PIM shall be deployed on a certain platform, the marks
are applied to the elements of the PIM before the
transformation; MDA does not directly address
architectural design or how to represent the architecture,
but the architecture has to be captured in the PIM or in
the mapping since the CIM captures the requirements and
the PSM is generated from the PIM using the mapping.
 Web engineering is a new research line in software
engineering that covers definition of processes,
techniques, and models suitable for web environments in
order to guarantee the quality of results. The research
community assumed the Model-Driven paradigm to
support and solve some classic problems detected in web
developments but there is a lack in web requirements

treatment. Therefore, NDT (Navigational Development
Technique) was developed which deals with requirements
in web systems. It is based on conclusions obtained in
several comparative studies and it tries to fill some gaps
detected by research community. It analysis how web
engineering can be applied in the enterprise environment.
The approach offers a web requirements solution based
on a Model-Driven paradigm that follows the most
accepted tendencies by web engineering. Here, security
patterns are proposed that offer the security at the
architectural level in analogy to design patterns. The first
step is to determine to what extent specific security
patterns shield from known attacks. This information is
fed to a mathematical model based on the fuzzy-set
theory and fuzzy fault trees in order to compute the risk
for each category of attacks. Estimates are proposed for
the resistance of the examined security patterns to
Spoofing, Tampering-with-data, Repudiation,
Information-disclosure, Denial-of-service, and Elevation-
of-privilege attacks. We had proposed a methodology for
quantifying the security level of a software system based
on the implemented/missing security patterns. [4]
Moreover, the estimation can be performed already at the
design phase. Thus, design problems can be detected at
an early stage, which reduces the cost compared to the
introduction of security during implementation. The
comparison of two e-commerce systems having the same
functionality, one without and one with security patterns,
has shown that the nonsecure application has a high risk
of being affected by each category of STRIDE attacks,
where as the secure application has a significantly lower
risk.

II. LAYERED SECURITY ARCHITECTURE PATTERNS

 The importance of the software security has been
profound, since most attacks to software systems are
based on vulnerabilities caused by poorly designed and
developed software. [5] Design flaws account for fifty
percent of security problems and risk analysis plays
essential role in solid security problems. To improve the
quality of software systems, design patterns are important
in object-oriented programming because they offer design
motifs, elegant solution to recurrent design problems.
DeMIMA (Design Motif Identification Multilayered
Approach), an approach to semi automatically identify
micro architectures that are similar to design motifs in
source code and to ensure the traceability of these micro
architectures between implementation and design.
DeMIMA consists of three layers: two layers to recover
an abstract model of source code, including binary class
relationships, and third layer to identify design pattern in
the abstract model. Nuemann and Parker organized
systems into eight layers for security analysis: External
environment, user, application, middle, networking,
operating system, hardware and internal environment. [6]
Neumann’s model needs simplification to reason about
systems, especially to construct an executable model.
Adding sub-layers, this architectural model can be
reduced to three layers Semantic, Logical and physical.
Semantic layer at the top includes people and

A.V.Krishna Prasad et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (3) , 2010, 185-189

186

organizations along with their goals. Logical layer in the
middle contains computers, networks and software.
Physical layer at the bottom represents the physical
existence that all entities have in the real world. Every
layer has a different concept of location, representing the
separate conceptual scope and connectivity of systems
and entities at each layer.

III. AGILE SECURE PATTERNS

 Because of several vulnerabilities in software products
and high amount of damage caused by them, software
developers are enforced to produce more secure systems.
Software grows up through its life cycle, so software
development methodologies should pay special attention
to security aspects of the product. [7] Agile
methodologies for security activities include applying
agility measurement and applying an efficient agility
reduction tolerance (ART). Using this approach method
engineer of the project can enhance their agile software
development process with security features to increase
product’s trustworthiness. A secure system is one that is
protected against specific undesired outcomes. Delivering
a secure system, and particularly, a secure web
application, is not easy. Integrating general-purpose
information systems development systems with security
development activities could be a useful means to support
these difficulties. Agile processes, such as Extreme
programming, are of increasing interest in software
development. Most significantly for web applications,
agile processes encourage and embrace requirements
change, which is a desirable characteristic for web
application development. Agile methods include Feature
Driven Development (FDD) and mature security
methods, namely risk analysis, and integrate them to
address the development of secure web applications. This
approach key feature includes: a process capable of
dealing with the key challenges of applications
development like decreasing life-cycle times and
frequently changing requirements and an iterative
approach to risk analysis that integrates security design
throughout the development process.

IV. SECURITY PATTERNS IMPLEMENTED USING AGILE

MDA AND EXECUTABLE UML

 MDA Security Implementations: Analysis at the level of
runtime architecture matches the way expert’s reason
about security or privacy better than a purely code-based
strategy. However, the architecture must still be correctly
realized in the implementation. Security ensures that
information is provided only to those users who are
authorized to possess the information. [8-15] Security
generally includes the following: Identification: This
assumes that the system must check whether a user really
is whom he or she claims to be. There are many
techniques for identification and it is also called as
authentication. The most widely used is
"Username/Password" approach. More sophisticated
techniques based on biometrical data are like retinal or
fingerprint scan; Authorization: This means that the

system should provide only the information that the user
is authorized for, and prevent access to any other
information. Authorization usually assumes defining
"user access rights", which are settings that define to
which operations, data, or features of the system the user
does have access; Encryption: This transforms
information so that unauthorized users (who intentionally
or accidentally come into its possession) cannot recognize
it. Refer to Figure 1 (Class Diagram): User enters
username and password to access information.
Authenticator checks the username and associated
password to know whether the user is really he or she
claims to be. Authenticator allows the user depending on
the check result. Authorizer checks this user type (for
example, administrator) and associated access rights.
Authorizer restricts the user to access the information.
The entered username and password by any user will be
transformed in an encrypted format so that any other user
who is correctly logged in cannot recognize it. Therefore
security class provides a key and algorithm used to
encrypt the data. Its implementation Sequence Diagram
works as: User enters the username and password which
are encrypted and transferred to authenticator to verify
correctness. Then access rights for specified user are
checked to allow for accessing of information.

Figure 1. Class diagram for MDA authentication using Executable UML

V. IMPLEMENTATION AND VALIDATION

A. Agile Security Patterns Design

Agile Methodology with Security Activities:
 There are some agile methods Extreme Program (XP),
Scrum, TDD (Test Driven Development), FDD (Feature
Driven Development). In order to restrain reduction of
agility nature, a method has been introduced. The method
consists of five steps as: Extracting Security Activities;
Calculating Agility Degree of Security Activities;
Integration of Agile and Security Activities; Activity
Process Integration Algorithm; Agility Reduction
Tolerance (ART)

A.V.Krishna Prasad et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (3) , 2010, 185-189

187

Figure 3. Class Diagram of Agile Methodologies with Security
Activities.

First Security Activities are extracted from existing
processes and guidelines from SecurityActivity class. The
activities are named as “Security Activities” and these are
used as basis for next steps. Classification of activities is
done by understanding them in life cycle. Agility degree
of activities is defined to measure their nimbleness.
Agility degree for each activity is defined as its agile
behavior. It represents level of activity’s compatibility
with agile methodologies. Grades between 0 and 5 are
assigned in agility degree vector (ADVect).Then
integration issues of agile and security activities are
handled. By analyzing agile methodologies and
identifying their core engine activities integration is done.
Activity integration compatibility matrix (AICM) is
generated with binary values. An algorithm to integrate
security activities with organization’s agile process is
introduced in Algorithm class. Follows all steps activity
by activity recursively. Finally agility reduction tolerance
parameter and its optimization value are discussed in
ART class. Tuning ART parameter is SMET’s (Secure
Method Engineer Team) art to keep a balance between
security and weight of the software development process.
Agile Approaches to Design:
A modern concept of design modeling is performed
through the design patterns. Design pattern is a solution
to a problem of design that repeatedly occurs and that can
be implemented in the code. The use of design practices
and patterns is given as: Agile methodologies focus on
incremental development without a single and large
upfront design. BDUFA (Big Design Up Front Anti-
pattern) is adopted. User changes idea on subject leading
to gathering of new requirements and change in code and
design. Agile design approaches can be readily identified
to implement. Agile methods like Extreme Program,
Scrum, TDD (Test Driven Development) and FDD
(Feature Driven Development) are introduced in various
cases or scenarios.
Agile Aspect Oriented Programming (AOP) Design:

AOP has a lot of similarity to agile software
development methods: in particular, Extreme

Programming and scrum. The basic idea of agile methods
is to develop software iterations. Each of them resulting
in software delivery. The main purposes of agile methods
are adaptation to changing requirements to the product,
and quick delivery, as opposed to using a traditional
waterfall method .In a sense, from the viewpoint of a
software process organization, using AOP can also be
considered as one of the agile techniques.
Communication and respect: AOP can be used with XP
as follows. Each developer is responsible for some cross-
cutting functionality to be implemented as an aspect. The
team leader and the team discuss the AOP structure of the
system and the manner of weaving the aspects to get an
entire working system. System requirements can be
distributed throughout the team as aspect stubs that at the
initial stage or at any other moment, can be discussed,
criticized by anybody, and updated upon mutual
agreement. As for aspect implementation, according to
the respect principle, nobody can modify as aspect
developed by another programmer without prior
discussion with the aspect developer. That will enable
really safe and modular implementation of the collective
code ownership principle. .If developer A remembers ,say
that the developer B is the best expert on the security
aspect, A will consult B before changing security
functionality in B’s aspect ,or,better,suggest the changes
to B, and it will be B’s final decision whether or not to
include the changes. Simplicity and courage: Incremental
development is quite suitable for applying AOP .The
simplest version of the new feature implementation can
be developed as an aspect .It will help us to correctly
determine the join points at which to inject fragments of
the new feature implementation .If there is a need which
enhance the feature implementation, it is likely to be done
only by modifying the aspect’s actions only. The scheme
of weaving the aspect will remain the same; it means that
the XP team will not have to do big group changes in the
entire code of product, and all changes will be localized
in the aspect. Feedback and test-driven development: If a
new functionality is designed, a new aspect should be
developed. Prior to that, acceptance tests are developed
for the functionality aspect. Implementation of the aspect
is driven by its acceptance tests .Customers who are
participating in the development process, according to XP
principles ,will also think about system development and
enhancement in terms of aspects.
Web Services Mining

According to WWW Consortium a web service is
defined as, “A Web Service is a software application
identified by a URI (Uniform Resource Identifier), whose
interface and bindings are capable of being identified,
described and discovered by XML artifacts and supports
direct interactions with other software applications using
XML based messages via Internet-based protocols. Web
Services Security Architectures have three layers viz.
Web Service Layer, Web Services Framework Layer
(.NET or J2EE), Web Server Layer.

For Web Servers security layer, important web servers
such as the institution’s main server and other publicly
accessible web servers are major targets of attack from

A.V.Krishna Prasad et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (3) , 2010, 185-189

188

the Internet. Additional measures to protect these systems
against malicious or accidental harm include making all
updates on a staging server, running Common Gateway
Interface (CGI) on a separate server, and having a hot
backup server, and having a hot backup server. Using a
staging server that is separate from the main server and
make updates to the main server in a more controlled
fashion. Placing CGI on a separate server prevents
intruders from gaining access to the main server via
insecure programs. A backup server that is regularly
synchronized with the main server enables us to recover
from an incident quickly by placing the primary server
with the backup.

For applications and databases layer, it is not feasible
to require through security design in all applications and
databases deployed on a college or university network.
Some applications and database guidelines are simple to
require such as SSL/HTTPS for web-based services and
logging facilities for auditing in the case of a problem.
However, in many instances it is necessary to accept
commercial products that have serious vulnerabilities (for
example, MSSQL). Additionally, it may be too costly to
implement security in some commercial systems (for
example, Oracle) or in-house applications. Therefore, it is
necessary to defend these systems at the network level.
Using tiered database/application architecture and other
middleware solutions when available can make it easier
to defend these systems and protect the data they contain.
More advanced requirements such as peer review of
source code are difficult to enforce. Participating in the
PKI Lite/Federal Bridge project may be feasible in some
institutions, providing support for IPSec, S/MIME, and
other security features such as access control. Other
technologies such as VOIP and IP Security cameras can
be difficult to secure and require special attention

CONCLUSIONS

In this paper, we discussed about Layered Security
architecture Security patterns using MDA Executable
UML, with a case study. An interesting extension to this
work would be the automatic introduction of missing
security patterns either at the design phase of a system
being developed or in already implemented software
systems.

For details of implementations source code (pseudo
code) and documentation please refer to the web site
http://sites.google.com/site/kpresearchgroup

ACKNOWLEDGMENT

The authors wish to thank the following for
implementing these concepts: A.Madhuri, P.Radhika,
P.Hari Krishna, and Ch.Venkat Abilash.

REFERENCES

[1] Sabine Buckl, Ulric Franke, Oliver Holschke, Florian
Matthes, Christian M.Schweda, Teodor Sommestad and
Johan Ullberg, “ A Pattern-based approach to Quantitative
Enterprise Analysis”, Proceedings of the Fifteen Americas

Conference on Information Systems, San Francisco,
California, pp. 1 – 11, August 6 – 9, 2009.

[2] Spyros T. Halkidis, Nikolaos Tsantalis, Alexander
Chatizigeorgiou and George Stephanides, “Architectural
Risk Analysis of Software Systems Based on Security
Patterns,” IEEE Transactions on Dependable and Secure
Computing, vol. 5 no. 3, pp. 129–142, July-September
2008.

[3] Nobukazu Yoshioka, Hironori Washizaki and Katsuhisa
Maruyama, “A Survey on Security Patterns”, Progress in
Informatics, Special Issue: The Future of Software
Engineering for Security and Privacy, No. 5, pp. 35 – 47,
National Institute of Informatics, 2008.

[4] Michael Vanhilst, Eduardo B.Fernandez and Fabricio
Braz,” A Multi-Dimensional Classification for Users of
Security Patterns”, Journal of Research and Practice in
Information Technology, Vol. 41, No. 2, May 2009,
Australian Computer Society Inc.

[5] E.B.Fernandez, M.M.Larrondo-Petrie T.Sorgente, and
M.Vanhilst,” A Methodology to develop Secure Systems
Using Patterns”, Idea Group Inc. pp. 107 – 126, 2007.

[6] Munawar Hafiz, Paul Adamczyk and Ralph E. Johnson,”
Organizing Security Patterns”, IEEE Software, July/August
2007, pp. 52 – 60.

[7] Anders Mattsson, Bjorn Lundell, Brian Lings and Brian
Fitzgerald, “Linking Model-Driven Development and
Software Architecture: A Case Study”, IEEE Transactions
on Software Engineering, Vol. 35, No. 1, pp. 83 – 93,
January/February 2009.

[8] Marria Jose Escalona and Gustavo Aragon, “NDT. A
Model-Driven Approach for Web Requirements”, IEEE
Transactions on Software Engineering, Vol. 34, No. 3,
May/June 2008.

[9] Yann-Gael Gueheneuc and Giuliano Antoniol, “DEMIMA:
A Multilayered Approach or Design Pattern
Identification”, IEEE Transactions on Software
Engineering, Vol. 34 No. 5, pp. 667 – 684,
September/October 2008.

[10] Hossein Keramati, Seyed-Hassan and Mirian-
Hosseinabadi, “Integrating Software Development Security
Activities with Agile Methodologies”, IEEE, 99. 749 –
754., DOI 978-1-4244-1968-5/08. 2008

[11] Xiaocheng Ge, Richard F.Paige, Fiona A.C.Polack,
Howard Chivers, Phillip J.Brooke, “Agile Development of
Secure Web Applications”, ACM ICWE 06, pp. 305 – 312,
July 11 – 14, 2006, Palo Alto, California, USA.

[12] Gustav Bostrom, Jaana Wayrynen, Marine Boden,
Konstantin Beznosov and Phillippe Kruchten, “Extending
XP practices to support Security Requirements
Engineering”, ACM SESS 06, pp. 11 – 17, May 20 – 21,
2006, Shanghai, China.

[13] Tore Dyba and Torgeir Dinagsoyr, “Empirical Studies of
Agile Software Development: A Systematic Review”,
Elsevier Science Direct Information and Software
Technology, 2008.

[14] A.Cenys, A.Normantas and L.Radvillavicius,” Role-based
Access Control Policies with UML”, Journal of
Engineering Science and Technology Review, pp. 48-50,
Kavala Institute of Technology, 2009.

[15] Marwan Abi-Antoun and Jeffrey M.Barnes, “Enforcing
Conformance between Security and Implementation”,
CMU-ISR-09-113, April 2009.

A.V.Krishna Prasad et al. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 1 (3) , 2010, 185-189

189

