

Web Security by Preventing SQL Injection Using
Encryption in Stored Procedures

Deevi Radha Rani, B.Siva Kumar, L.Taraka Rama Rao, V.T.Sai Jagadish, M.Pradeep

Department of Computer Science and Engineering
Koneru Lakshmaiah College of Engineering

Green Fields, Vaddeswaram, Guntur District, A.P., INDIA.

Abstract— SQL Injection attacks target databases that are
accessible through a web front-end, and take advantage of flaws
in the input validation logic of Web components such as CGI
scripts. SQL Injection attacks can be easily prevented by
applying more secure authentication schemes in login phase itself.
In this paper we are going to prevent SQLIA (SQL Injection
Attacks) by using encryption in Stored Procedures. Advance
Encryption Standard (AES) Encrypted user name and password
are used to improve the authentication process with minimum
overhead. The server has to maintain encrypted parameters of
every user’s username and password.

Keywords- sql injection; encryption; stored procedures;
parameterized queries; bind variables; sanitization; authentication

1. INTRODUCTION

SQL injection is a basic attack used either to gain unauthorized
access to a database or to retrieve information directly from the
database. They are used most often to attack databases and for
extracting any confidential information such as Credit card
information, Social Security numbers etc. Web applications are at
highest risk to attack since often an attacker can exploit SQL
injection vulnerabilities remotely without any proper database or
application authentication. An application is vulnerable to SQL
injection for only one reason – end user input string is not properly
validated and is passed to a dynamic SQL statement without any such
validation. If we are sanitizing the user input, then indirectly we are
restricting them to not entering single quotes and double quotes in the
input.
SQL injection is too much vulnerable that it can bypass many
traditional security layers like Firewall, encryption, and traditional
intrusion detection systems. SQL injection can not only be used for
violating the security by seeing the private data of the people but also
can be used for bypassing the authentication of user which is a big
flaw in the web applications. Normally, web applications is a three
tier architecture, the Application tier at the user side, Middle tier
which converts the user queries into the SQL format, and the backend
database server which stores the user data as well as the user’s
authentication table
Till now we have so many solutions to prevent SQLIA. Those are
using bind variables, proper input validation, customized error
messages, limiting database permissions. Any program or application
may be vulnerable to SQL injection including stored procedures
executed with a direct database connection. Write the stored
procedure in one way, you can prevent SQL injection. Write it in
another way, and you are still vulnerable to SQL injection.

Stored procedures are an important part of modern-day web
applications. It is an operation set that is stored in the database. Since
stored procedures are stored on the server side, they are available to
all clients. They add an extra layer of abstraction in to the design of a
software system. This layer of abstraction also helps put up an extra
barrier to potential attackers. The benefits of stored procedures are
encapsulation of business logic in a single entity, faster execution,
exception handling, create it once and store it in database and can be
called any no. of times. SQL statements are built at run time
according to the different user inputs. For example, in SQL server,
EXEC (varchar(n)@SQL) could execute arbitrary SQL statements.
This feature offers flexibility to construct SQL statements according
to different requirements, but faces a potential threat from SQL
Injection Attacks.
In this paper we are proposing a technique to prevent the SQL
injection especially in stored procedures by encrypting user input
fields. For this purpose we are using AES encryption algorithm. We
are going to encrypt user data in stored procedures so that SQL
injection can be eliminated in stored procedure. If a user wants to
access the database form remote place then he has to logon to the
system through web site using the user name and password. In the
middle tire, SQL query is generated and the web server verifies user
name and password, if it is matches then the user can access the
database. We use one mechanism like SQL-Injection in order to
bypass the login phase without entering proper user name and
password.
The original query after entering correct user name and password will
be like this:

$stmt =”SELECT * FROM users where username=’username’ and
password= ’password’

Figure. 1

Deevi Radha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3689-3692

3689

For example if user enters “jagadish‘or 1=1--“ and “any password”
in username and password fields instead of correct user name and
password, the resulting query will be:

$stmt=”SELECT * FROM users where username=’jagadish’ or
1=1 --‘ and password=’any password’

After --, the rest of the sentence will be treated as comment and
because of ‘1=1’ is always true.

This paper deals with prevention of SQL-Injection in login-phase and
in UPDATE query. Both of these are implementing in stored
procedures with proper encryption so that SQLIA can be prevented.

2. COMPARATIVE ANALYSIS

Do Stored Procedures Protect Against SQL Injection? Stored
procedures do not, by themselves, necessarily protect against SQL-
Injection. Write a stored procedure one way, and you can prevent
SQL Injection. Write it another way, and you are still vulnerable.
let’s suppose we have the following (admittedly contrived) login
script:

<form method="post" action="test1.php">
 Username:<input type="text" name=
"Username" id="Username"/></br>
 Password:<input type="text" name=
"Password" id="Password"/></br>
 <input type="submit" name="submit"
value="Submit" />
</form>

<?php
if(isset($_POST['Username']))
{
 $username = $_POST['Username'];
 $password = $_POST['Password'];

$con = mysql_connect(“localhost”,”root”,””);

 $params = array($username, $password);
 $stmt = sqlsrv_query($conn, "{call
VerifyUser(?, ?)}", $params);

 if(sqlsrv_has_rows($stmt))
 {
 echo "Welcome.";
 }
 else
 {
 echo "Invalid password.";
 }
}
?>

Let’s take a look at two ways to write that stored procedure…

The Wrong way

Suppose the VerifyUser stored procedure was created by dynamically
building a SQL string within the stored procedure, like this:

CREATE PROCEDURE VerifyUser
 @username varchar(50),
 @password varchar(50)

AS
BEGIN
 DECLARE @sql nvarchar(500);
 SET @sql = 'SELECT * FROM UserTable

WHERE UserName = ''' + @username + '''
AND Password = ''' + @password + ''' ';
 EXEC(@sql);
END
GO

As we discussed in figure.1: login form, the dynamically generated
SQL Query will be look like this:

SELECT * FROM UserTable WHERE UserName =
'jagadish' --' AND Password = 'any password'

The last half of the query is commented out!

The Right way

Now suppose the VerifyUser stored procedure was created like this:

 CREATE PROCEDURE VerifyUser
 @username varchar(50),
 @password varchar(50)
 AS
 BEGIN
 SELECT * FROM UserTable
 WHERE UserName = @username
 AND Password = @password;
 END
 GO

Now, an execution plan for the SELECT query exists on the server
before the query is executed. The plan only allows our original query
to be executed. Parameter values (even if they are injected SQL)
won’t be executed because they are not part of the plan.

3. RELATED WORK

Many techniques have been proposed to prevent SQL injection
Attacks for example, dynamic monitoring tools. Various SQLIA
detection techniques for the application layer have been proposed in
literature, but none of them pay enough attention to SQLIA in stored
procedures by providing enough security. Many existing techniques,
such as filtering, information-flow analysis, penetration testing, and
defensive coding, can detect and prevent subset of vulnerabilities that
lead to SQLIAs. A number of techniques are in use for securing the
web applications. The most common way is the authentication
process through the username and password. One of the major
problems in the authentication process is the input validation
checking. Most of the papers are restricting the user by not entering
single quotes and double quotes in the user fields. Here in this paper
we will concentrate on encrypt user entered data and passed to the
stored procedure so that SQL Injection will be prevented.
Various techniques have been proposed for controlling SQL injection
attacks, for example, Ke Wei [1] is using static analysis and runtime
analysis in order to detect and prevent the SQL-Injections in stored
procedures with the help of SQLIACHECKER() function that identify the
user input by the current session id and build a finite state automata.
In AMNESIA (Analysis and Monitoring for Neutralizing SQL-
Injection attacks) (Halfond and Orso 2005) [4], the authors are using
runtime checking of the query and declare it valid or malicious.
AMNESIA checks query in different steps. In the first step it

Deevi Radha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3689-3692

3690

identifies the “hotspot”. Hotspots are application code which issues
SQL query to database. Second, it forms a model for legitimate query
in the form of NDFA (Non-Deterministic Finite Automata). Finally,
as a request comes it checks the query with NDFA and declares it
legitimate or malicious.
MeiJunjin [2] is using an approach for the detection of SQL injection
vulnerabilities. The above mentioned author has used static, dynamic
and automatic testing method for the detection of SQL Injection
vulnerabilities. The approach traces user queries to vulnerable
location. Although these techniques are effective, they cannot capture
more general forms of SQLIAs that generate syntactically and type
correct queries. Wassermann and Su combine static analysis with
automated reasoning in [30] to detect tautologies in the dynamically
generated SQL queries, but the other forms of SQLIAs would still
succeed rendering the system vulnerable.
In [3], Indrani Balasundaram and E.Ramaraj have proposed a
technique to prevent SQL-Injection attacks by using encryption but
not in stored procedures. The use of stored procedures alone does not
protect one against SQLIAs as is commonly assumed by most
developers, but appropriate use of parameters along with stored
procedures is necessary to achieve a minimal defense against such
attacks [8] [11].

4. PROPOSED SYSTEM

We propose an SQL-Injection Attack prevention technique that
addresses all types of SQLIAs. This technique works by combining
encryption of user entered data within the stored procedure. The basis
of such a technique is that effect of the malicious code can be avoided
by using encryption algorithm.
After submitting the user registration form, a unique secret key will
be generated corresponding to the given username and password. A
stored procedure will be called by passing the following parameters:

 Username
 Password and
 Secret key

Basic System Model

Using AES_ENCRYPT() function username and password are
encrypted with the secret key generated earlier. The encrypted values
of username and password along with username are inserted into user
table. The following query is used to insert these values.

Insert into user_table values (‘Username’, ‘Enc_Username’,
’Enc_Password’);
Because of encryption in registration phase different attacks like “;
drop table user” will be prevented.
During Login phase, up on submitting the user credentials, secret key
will be generated using the same procedure used in registration phase.
Stored procedure will be called by passing the following parameters:

 Username
 Password and
 Secret key

Again these values are encrypted as earlier and then used in the select
query to check whether the given credentials are valid or not. The
following is a query used to verify the user credentials.

Select * from user_table where username=@Enc_Username and

password=@Enc_Password;

If user has entered malicious code like “ ‘ or 1=1 - -“, because of
Encryption, they will be converted into some hash code.

Secret key will be generated by using the combination of the two
fields, username and password. First three letters of username &
password will combined in random order and then encoded to get a
sequence of bits which is the secret key. This will be done
dynamically without storing the secret key every time user enters
username and password.

Generation of Secret key

Typical Stored Procedure

CREATE PROCEDURE VerifyUser
 @username varchar(50),

@password varchar(50) ,
@secret_key varchar(50)

AS
BEGIN
 DECLARE @sql nvarchar(500);

 @username=AES_ENCRYPT(@username,
 @secret_key);
 @password=AES_ENCRYPT (@password,
 @secret_key);

 SET @sql = 'SELECT * FROM UserTable WHERE
 UserName =@username AND Password = @password;

EXEC (@sql);
END
GO

Deevi Radha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3689-3692

3691

Vulnerability in Update query will be avoided by the use of
Encryption. Whenever user enters “ password’ - - “, whatever he
entered will be converted in to some other form, so that “ - -“ will not
be executed.

Update user_table set password=enc(‘password’ - -) where
username=’user1’;

Algorithms for the proposed system

Algorithm 1: Registration phase.

Inputs: username, password entered by the user
Output: encrypted username and password will be stored in
database.

1. User enters his/her username and password and other
registration information.

2. Pass this information to stored procedure[a] which will
perform the following actions.

3. Generating unique secret key [b] corresponding to username
and password.

4. Encrypt username and password using the generated secret key
and AES encryption algorithm.

5. Store encrypted username and password along with username
and password in the database.

[a]: Implemented Stored procedure is not vulnerable to SQLIA. For
this, instead of using dynamic SQL statement we will use prepared
statement in JSP.
[b]: Secret key will be generated by using the combination of the two
fields, username and password. First 3 letters of username &
password will combined in random order and then encoded to get a
sequence of bits which is the secret key.

Algorithm2: Login phase

Inputs: username, password entered by the user
Output: encrypted username and password will be stored in
database.

1. User enters his/her username and password.
2. Generate secret key [b] corresponding to username and

password.
3. Encrypt username and password using the generated secret key

and AES encryption algorithm.
4. Stored procedure will be called with parameters encrypted

username and password.

5. CONCLUSION

SQL Injection is one of serious security threat issues for the
organizations and businesses operating on the web. Security of data is
very important for every organization. SQL injection is a common
technique hackers employ to attack underlying databases. The attack
alters the SQL queries and behavior of the system for the benefits of
hacker. In our proposed system the Encrypted username and
password are used to improve the authentication process with
minimum overhead. We propose a SQL Injection attack prevention
technique that addresses almost all types of SQLIA’s. The technique
monitors all dynamically generated SQL queries associated with user
input and captures the original structure of the SQL statement.
Execution of malicious code can be avoided by using encryption
algorithm. The advantage with the proposed system is that the
vulnerabilities in stored procedures can be avoided. We need not to
sanitize the user input and therefore not restricting the user from
entering special characters. This is highly secured due to encryption
algorithm.

REFERENCES
[1] Ke Wei, Preventing SQL Injection attacks in Stored procedures. Australian Software
Engineering Conference,(2006).
[2] MeiJunji, An approach for SQL injection vulnerability detection. Sixth International
Conference on Information Technology, (2009)
[3] Indrani Balasundaram An Authentication Mechanism to prevent SQL Injection
Attacks, International Journal of Computer Applications Volume 19– No.1, April 2011.
[4] Halfond, W. G. J. and A. Orso (2005). AMNESIA: analysis and monitoring for
Neutralizing SQL-injection attacks. . ASE’05. Long Beach, California, USA.
[5] W. G. J. Halfond and A. Orso. Combining static analysis and runtime monitoring to
counter sql-injection attacks. WODA, 2005.
[6] G.Wassermann and Z. Su. An analysis framework for security
in web applications. SAVCBS, 2004.
[7] Shaukat Ali, Azhar Rauf, and Huma Javed, 2009. “SQLIPA: An Authentication
Mechanism Against SQL Injection,” European Journal of Scientific Research, ISSN
1450-216X Vol.38 No.4, pp 604-611.
[8] H. to: Protect from SQL Injection in ASP.NET.
http://msdn.microsoft.com/library/default.asp?url=/library/enus/dnpag2/html/PAGHT00
0002.asp.
[9] Sruthi Bandhakavi and Prithvi Bisht Preventing SQL Injection Attacks using
Dynamic Candidate Evaluations, Alexandria, Virginia, USA, 2007
[10] Etienne Janot, Pavol Zavarsky, Preventing SQL Injections in Online Applications:
Study, Recommendations and Java Solution Prototype Based on the SQL DOM.
[11] C. Cerrudo. Manipulating Microsoft sql server using sql injection.
http://www.appsecinc.com/presentations/Manipulating SQL Server Using SQL
Injection.pdf, White Paper.
[12] Ntagwabira Lambert and Kang Song Lin, Use of Query Tokenization to detect and
prevent SQL-Injection attacks, IEEE 2010.
[13]http://www.andhrahackers.com/forum/sql-injection/sql-injection-tutorial/, Basic Sql
injection types
[14]http://palisade.plynt.com/issues/2006Jun/injection-stored Procedu res/ Stored
Procedures
[15] https://www.owasp.org/index.php/Avoiding_SQL_Injection Avoiding
SQL_injection Attacks.
[16]http://www.darkreading.com/databaseSecurity/167901020/security/application-
security/227300073/five-ways-to-stop-mass-sql-injectio n-attacks.html; basic concepts of
SQL-Injection and Avoiding SQL-Injection attacks.
[17]http://download.oracle.com/docs/cd/B19306_01/appdev.102/b14258/d_crypto.htm;
Encryption in stored procedures
[18]http://dev.mysql.com/doc/refman/5.5/en/encryption-functions.ht ml; Encryption
functions

Deevi Radha Rani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (2) , 2012,3689-3692

3692

