
 Cryptocurrency Website Scraper
Divaker Garkoti#1, Yash Sharma*2, Yogesh Singh Rajput#3	

MCA Department, School of Computer Application and Technology
Galgotias University, Greater Noida, Uttar Pradesh, India

1garkotid2312@gmail.com, 2yashkaushik054@gmail.com,
3Yogeshsinghrajput54@gmail.com	

Supervised by: Mr. Rajesh Sharma, Assistant Professor,
School of Computer Application and Technology

Galgotias University, Greater Noida, Uttar Pradesh, India
rajesh.sharma@galgotiasuniversity.edu.in

	
Abstract—	 In this modern technological and internet age,
data is an integral asset driving innovation and decision-
making in every discipline. With the introduction of web
scraping as a new powerful tool to extract data, researchers
and developers can retrieve huge masses of information
dynamically from websites that are not necessarily
structured. This paper go through web scraping properties
and mechanisms in the context of cryptocurrency, focusing on
extracting real-time data concerning cryptocurrencies posted
on websites like CoinMarketCap. Using Python libraries such
as Selenium, Scrapy, and BeautifulSoup offers a rich set of
functionalities to automate tasks and efficiently sift significant
data, such as volume, price, and market capitalization. The
extracted data is then stored in a MongoDB database and in
CSV files for further analysis.
Integration with Pymongo for linking Python script with the
MongoDB database; whereas, data storage is made in the
form of CSV files, and hence the Pandas library has been
utilized. Moreover, to make interaction possible between the
users, a basic GUI was developed using the combination of
HTML, CSS, and JavaScript. This interface is connected to
the Python script via PHP, providing a seamless workflow for
triggering data scraping processes. This study also highlights
the problems encountered during web scraping, such as
handling dynamically loaded websites that load data using
scrolling techniques to load additional data asynchronously
and frequent updates of WebDriver to ensure compatibility
with browser updates. In addition, it deals with the issues
related to managing data accuracy and optimizing the
scraping process for consistent results.

Keywords—	 Web scraping, cryptocurrency, CoinMarketCap,
real-time data, Selenium, Scrapy, MongoDB, Pymongo, CSV,
Pandas, GUI development, HTML, CSS, Javascript, PHP,
integration, dynamic websites, data accuracy, asynchronous
data loading, data analysis, Web driver.

I.INTRODUCTION
Overview of project:
For every new emerging technology, data has slowly and
incrementally become a resource for most businesses
around the world. Having access to real-time information

can greatly empower smarter decisions, especially in
today's financial world, where combining cryptocurrency
data with solid market analysis is highly valuable.
However, much of this data stays on dynamic and
unstructured websites that cannot easily be accessed
through traditional access means. Web scraping is a
powerful technique that will allow for the effective
extraction of large volumes of data from such websites.
This paper focuses on web scraping in cryptocurrencies,
targeting the extraction of real-time data from
coinmarketcap. Using selenium and scrapy with relevant
python libraries, it explains how to automate the download
of essential financial metrics like price, volume, and
market capitalization. Subsequently, the scraped data is
stored in the database MongoDB and also CSV files to
create structured data that could be analyzed further. It
integrates MongoDB into the Python script with the help of
Pymongo and uses Pandas for exporting data in tabular
format.
HTML, CSS, and JavaScript are also used to create a user-
friendly interface for extracting the data. That application
can be used to interact with the scraping tool. This
interface is linked to the Python script using PHP, creating
a seamless process for triggering web scraping tasks. The
paper also discusses key challenges, such as managing
dynamically loaded websites that require scrolling for
additional data and the frequent need to update WebDriver
due to browser updates.

	

	Libraries Used:
1. Scrapy: This is an open-source Python framework quite
extensively employed in web crawling. That brings a much
better method of extracting all the required data from
websites and then processing further. In the course of this
project, Scrapy will mainly be used for starting the entire
process of scraping, managing data flow for collection, and
integrating with Selenium in order to scrape the dynamic
content.

2. Selenium: This is one of the most powerful browser
automation tools, enabling interactions on a web page just
as if a user were to act on it in real-time. Its main use is for
scraping dynamic content, such as information within
JavaScript rendered. Selenium was used in this project to
load the coinmarketcap page and scroll through it, so all
the data would be rendered and thus be available for
scraping.

3. Pymongo: The official Python client for MongoDB is
called Pymongo, and it allows Python scripts to
communicate with MongoDB databases. It
provides database operations like document insertion,
querying, and updating. Pymongo is used in this project to
harvest cryptocurrency data from CoinMarketCap and
store it in MongoDB for later analysis.

4. Pandas: Pandas is a powerful data manipulation and
analysis library in Python, especially known for its
structure of DataFrame, which makes it easy to deal with
tabular data. So in this project, the use of Pandas to store
the scraped data in some tabular format can easily convert
it into CSV files to export for better analysis and retrieval
of the cryptocurrency data in some structured form.

5. CSV- This module is used to read from and write to
CSV files that contain tabular data. It is used to store
information related to bitcoin scrapes as CSV files, which
you can then access and further examine using spreadsheet
software.	

Objective of the research:
Designing, implementing, and assessing a platform that
allows users to mine bitcoin data for analysis and research
is one of the primary goals of this study. With data from
sites like CoinMarketCap, we hope to create a more
practical solution for real-time cryptocurrency data
scraping with Python-based frameworks like Selenium and
Scrapy. This project will help in achieving the following
major goals:

1. Realtime data scrape: Getting volume, market
capitalization, price, rank, and circulating supply of such
key cryptocurrency metrics from dynamic websites.

2. Data Organization: The scraped data will be in the
structured table formats like CSV files to avail for further
analyses.

3. Efficient data storage: MongoDB utilization for data
storage, so that fast retrieval and efficient management are
possible, for more in-depth analytical tasks.

This novelty of research not only helps to extract real-time
cryptocurrency data and store it but gives out the
fundamental understanding of data scraping techniques that
can be employed in a wide variety of applications in the
rapidly evolving field of data science and technology.

Literature Survey:
Web scraping has been a critical focus of research in the
context of data extraction and automation.

Mdpi.com:
This paper discusses the technological advancements in
data extraction and automation, particularly in handling
dynamic web content. It was instrumental in shaping the
methodology used in scraping cryptocurrency data from
dynamic websites such as CoinMarketCap.

ResearchSquare:
This study looks at how to optimise scraping technologies,
particularly for asynchronously loading websites. The
choice to use Selenium was to manage dynamic scrolling
and real-time data loading on cryptocurrency webpages
was directly affected by this research.

CoinMarketCap:
The market capitalisation, volume, and real-time pricing
data for the majority of cryptocurrencies are available on
CoinMarketCap. Recognising the structure and behaviour
of the website was essential for this paper's initial emphasis
in order to create a suitable scraping approach using the
Python tools Scrapy and Selenium.

SCRCS Publications (2023):
This paper discusses the web scraping together with the
databases, with the emphasis on the elasticity and
scalability of MongoDB. It provided useful data
management features that were used to store data from
cryptocurrency scraping. The automated online scrapping
of such financial data in real time is the objective of this
study. The outcomes of the paper were able to make sure
that the scraping and the storage of the cryptocurrency data
was effective by simplifying the automation and data
extraction processes of the project.

Python.org:
The official Python website contains an how-to document
about the uses of libraries such as Selenium, Scrapy and
Pandas. This platform was crucial during the setup of the

project and in the implementation of the Python based
scraping and data storage solutions.

GeeksforGeeks:
GeeksforGeeks additionally provided a step-by-step
procedure for scraping tables from websites using the
URLSelenium library. Important facets of the tutorial
included, empowering automated interactions of a web
browser, the ability to parse HTML document and locating
the elements of the table and the ability to export
efficiently, structured data from the tables into CSV files.
Following this guide helped us to better comprehend the
internal processes involved in scraping tabulated
information from a dynamically generated webpage. This
knowledge greatly assisted in collecting and accurate
information and systematic data collection for market
prices, volumes and rankings of coins from
CoinMarketCap.

MongoDB
The MongoDB official documentation of PyMongo driver
will be helpful for the establishment of an unchanging link
between Python script and MongoDB database. For the
operation with the MongoClient object, the guide had
simple instructions on how to make a connection, and very
detailed descriptions of the features of PyMongo for the
execution of operations performed on the database. This
documentation has helped us successfully implement the
needful connection into the storage of scraped
cryptocurrency data into MongoDB; hence, it is very
effective for the proper management and retrieval of data
towards further analysis purposes.

Mitchell, R. (2020). Web Scraping with Python: Data
Extraction from the Modern Web: To begin with web
scraping in Python, this book covered, among other things,
Selenium, BeautifulSoup or Scrapy, which are essential
tools. What was more useful is its practical orientation
which concerned creating scraping scripts for garnering
data about cryptocurrencies.

Sweigart, A. (2019). Automate the Boring Stuff with
Python, 2nd Edition: This book presented a number of
important automation methods that assisted one in
automating routine operations in the course of this
research. It also gives the basis of embedding Python
scripts into the interfaces for the MongoDB and for the
storage of CSV files with cryptocurrency data.

II.METHODOLOGY
The basis of this research is an efficient collection of
cryptocurrency data through web scraping techniques and
Python applied as the programming language. All the web
scraping processes that are involved in this are fully
automated, and hence, the use of Selenium and Scrapy
Python libraries is applied. These two well-known libraries

provide robust capabilities for data scraping from dynamic
websites. The approach utilised to this research is based on
what is mentioned below:

Step 1: Configuring the Environment
Version of Python: The tool used for web scraping was
Python 3.12.6.
Installing Libraries: This package manager, pip, was used
for installing the required libraries; these included
Selenium, Scrapy, Pandas, Pymongo, and CSV.

Step 2: Write the Spider using Scrapy
This spider has been created to manage the crawling
process of the cryptocurrency website CoinMarketCap.
With such a spider, a lot of data may be parsed efficiently
with the use of asynchronous requests.

Step 3: Importing Library
Import necessary libraries included Pymongo for
interactions with databases, Pandas, which would handle
tabular-based data management, Scrapy for the extraction
of required data, and Selenium to create an automated
browser.

Step 4: Installation and setup of compatible WebDriver
Selenium requires a WebDriver for the interaction with the
browser. The WebDriver that would facilitate automation
of browsing and scraping was downloaded for Chrome and
set up accordingly. The path for the driver was established
to ensure it works perfectly.

Step 5: Setting Up the HTTP Request
WebDriver was used to mimic browsing the website,
allowing it to send HTTP requests. This helps load
dynamic content created with JavaScript.

Step 6: Scraping Data with the Spider
A Scrapy spider was used to explore the CoinMarketCap
site, specifically targeting the table displaying
cryptocurrency information. It uses XPath to locate
specific HTML elements and gather the needed data.

Step 7: Extracting Specific Data
Among many other things, the spider was made to surf the
website and scrape all of the primary cryptocurrency data
which included rank, name, symbol, market capitalization,
price, volume, circulating supply, and percent changes over
time.

Step 8: Managing Dynamic Content
In an effort to handle the poor loading of the data, dynamic
scrolling was utilized. It ensured that all data had been
extracted by slowly scrolling through the webpage as it
waited for the loading of more information.

Step 9: Connecting to MongoDB

I used Pymongo to connect to MongoDB. The extracted
cryptocurrency data was then stored in a MongoDB
collection for future analysis.

Step 10: Storing Data into MongoDB
Every data entry that was extracted was saved to the
MongoDB collection to make them easily accessible and
processable later.

Step 11: Exporting Data to CSV Files
Along with saving data into the MongoDB, the extracted
information was exported to CSV files using the Pandas
library. The CSV format provides simple, organized
structure that's instantly accessible and then easily
analyzed further.

Step 12: Graphic User Interface Design
Using that as the base, HTML, CSS, and JavaScript create
a simple GUI. To make the application more
understandable to the users, a GUI is implemented.

Step 13: Linking the Python Web Scraper to the GUI
PHP was used to connect the GUI to the Python scraper so
that scraping could be initiated directly from the interface.
This makes it smooth for the consumers as they can initiate
the process of scraping from the front-end.

Implementation:
1. Environment Setup
Installing the necessary libraries to enable data storage and
web scraping was the first step in the implementation.
Among the libraries used are:

Scrapy is a Python web scraping package that is used to
effectively manage the crawling and scraping process.
Installation command for Scrapy:
pip install scrapy

Selenium: An automation tool for a browser that interacts
with content on dynamic web pages which load content
asynchronously.
Installation command for Selenium:
pip install selenium

Pandas: A library for data manipulation and analysis, used
to create and manage data frames and facilitate CSV file
writing.
Installation command for Pandas:
pip install pandas

PyMongo: A library for communicating with MongoDB
that makes it possible to save the scraped data in an easy-
to-use manner.
Installation command for Pymongo:
pip install pymongo

The implementation was executed using Python version
3.12.6, and the Chrome WebDriver was set up to allow
Selenium to control the Chrome browser.

2. Database Connection
A connection to the MongoDB database was established
using the following code:
client =
MongoClient("mongodb+srv://garkotid***:*******@proj
ects.f6mcr.mongodb.net/")
db = client.cryptocurrency

3. Data Insertion Function
To manage the insertion of cryptocurrency data that has
been scraped into the MongoDB collection, a function
called insertToDB was defined. A document with the
necessary fields—rank, name, symbol, market
capitalisation, price, circulating supply, volume, and
percentage changes over various time periods—is created
by the function.
def insertToDB(rank, name, symbol, market_cap, price,
circulating_supply, volume, percent_1h, percent_24h,
percent_7d):
 collection = db.coinmarketcap
 post = {
 'Rank': rank,
 'Name': name,
 'Symbol': symbol,
 'Market Cap': market_cap,
 'Price': price,
 'Circulating Supply': circulating_supply,
 'Volume': volume,
 '% 1h': percent_1h,
 '% 24h': percent_24h,
 '% 7d': percent_7d
 }
 inserted = collection.insert_one(post).inserted_id
 print(f"Inserted document with ID: {inserted}")
 return inserted

4. Scrapy Spider Implementation
The core part of the project is CoinMarketCapSpider - a
class inherited from Scrapy's Spider and encapsulating all
web scraping logic. A spider goes ahead and initiates a
Selenium WebDriver instance for interacting with the
CoinMarketCap website.
class CoinMarketCapSpider(scrapy.Spider):
 name = 'coinmarketcap'
 CHROME_DRIVER_PATH = 'H:\\chromedriver.exe'
##chrome Driver Path
 start_urls = ['https://coinmarketcap.com/all/views/all/']
website url
The __init__ method creates a CSV file to hold the scraped
data locally and initialises the Chrome driver. The
following headers make up the structure of the CSV file:

with open(self.data_file, 'w', newline='', encoding='utf-8')
as f:
 writer = csv.writer(f)
 writer.writerow(['Rank', 'Name', 'Symbol', 'Market
Cap', 'Price', 'Circulating Supply', 'Volume', '% 1h', '%
24h', '% 7d'])
 print("CSV file initialized.")

5. Data Scraping Logic
The spider's parse method implements the fundamental
logic for data scraping. This technique obtains the website,
loads all of the content via scrolling, and retrieves the
necessary info from the bitcoin information table. Data
points including rank, name, symbol, market capitalisation,
price, circulating supply, volume, and percentage changes
over one hour, twenty-four hours, and seven days are
captured by processing each table row.

6. Data Storage
After successfully scraping the data, it is then saved in a
CSV file and in the MongoDB database. New points of
data will be appended to the CSV file but with MongoDB
you can access tha data fast for further analysis.
def parse(self, response):
 print("Starting to parse the webpage...")
 self.driver.get(response.url)
 last_height = self.driver.execute_script("return
document.body.scrollHeight")
 print(f"Initial page height: {last_height}")
 while True:
 print("Looking for table rows...")
 rows = self.driver.find_elements(By.XPATH,
'//table/tbody/tr')
 print(f'Number of rows found: {len(rows)}')
 new_data = []
 for row in rows:
 try:
 rank = row.find_element(By.XPATH,
'./td[1]/div').text
 name = row.find_element(By.XPATH,
'./td[2]/div/a[2]').text
 symbol =
row.find_element(By.XPATH, './td[3]/div').text
 market_cap =
row.find_element(By.XPATH, './td[4]/p/span[2]').text
 price = row.find_element(By.XPATH,
'./td[5]/div/span').text
 circulating_supply =
row.find_element(By.XPATH, './td[6]/div').text
 volume = row.find_element(By.XPATH,
'./td[7]/a').text
 percent_1h =
row.find_element(By.XPATH, './td[8]/div').text
 percent_24h =
row.find_element(By.XPATH, './td[9]/div').text

 percent_7d =
row.find_element(By.XPATH, './td[10]/div').text
 row_id = (rank, name, symbol,
market_cap, price, circulating_supply, volume,
percent_1h, percent_24h, percent_7d)
 if row_id not in self.scraped_set:
 self.scraped_set.add(row_id)
 new_data.append({
 'Rank': rank,
 'Name': name,
 'Symbol': symbol,
 'Market Cap': market_cap,
 'Price': price,
 'Circulating Supply': circulating_supply,
 'Volume': volume,
 '% 1h': percent_1h,
 '% 24h': percent_24h,
 '% 7d': percent_7d
 })
 print(f"Scraped data for {name} ({symbol})")
 insertToDB(rank, name, symbol, market_cap,
price, circulating_supply, volume, percent_1h,
percent_24h, percent_7d)
 except Exception as e:
 print(f'Error scraping row: {e}')

7. Completion of Scraping
Upon completion of the scraping process, the Chrome
WebDriver is closed, and a message indicating the
completion of the scraping is printed to the console.
self.driver.quit()
 print('Scraping completed.')

III.RESULTS
This study effectively show that real-time cryptocurrency
data can be scraped from websites like CoinMarketCap,
processed, and stored in a MongoDB database and CSV
files for later examination. A number of important results
were used to evaluate the implementation:

1. Effective Extraction of Data
Using Python, Selenium, and Scrapy, the web scraping
solution we recorded important bitcoin metrics in real time.
Information was gathered for a number of fields, including:

Rank: The position of cryptocurrency's to its market
capitalisation.
Name: The cryptocurrency's name and associated symbol.
Market Cap: Each cryptocurrency's total market
capitalisation.
Price: The cryptocurrency's current price.
Circulating supply: supply available in the market.
Volume: The amount of trading activity during the past 24
hours.
Percentage Change: Over the course of one hour, twenty-
four hours, and seven days, the price percentage varies.

The scraper handler navigates through dynamically loaded
content with ease. The automation of scrolling ensures that
no piece of information is left out, and thus an immense
compilation of bitcoin data was amassed.

2. Data Management and Storage:
Successfully stored the two formats of scraped data:
CSV Files: All the data is kept in CSV files, which can be
analyzed offline with the help of spreadsheet programs like
Excel.
Working with data in a table format is simple and
convenient.
MongoDB: MongoDB is a NoSQL database that stores
data efficiently, making it easy to access and manage. It
handled large amounts of cryptocurrency data effectively,
allowing for smooth querying and analysis.

3. Real-Time Data Access
Getting real-time cryptocurrency data is crucial for
accurate market analysis. With the help of Selenium and
Scrapy, the platform always recorded the latest data by
efficiently handling dynamic content.

4. Integration of User Interface
In order to make the tool user-friendly, a basic user
interface was implemented. The connection would allow
users to view and interact with real-time cryptocurrency
data by ensuring a smooth and continuous flow of data
from collection to display. The tool would be usable by
non-programmers through a "Start Scrape" button on the
front-end interface, where users may actually initiate the
web scraping process.

5. Data Scalability
The tool can scrape large volumes of cryptocurrency data
without compromising on performance. It was successful
in scaling to capture all entries, even with incremental
scrolling, as there is a huge amount of data on the
CoinMarketCap website.
Below is a snippet of the extacted data that is stored in the
csv file.

IV.CONCLUSION
This paper is successful in showing how a trustworthy
cryptocurrency web scraping tool can be designed and
deployed. Using Python's powerful libraries, including

Selenium, Scrapy, and Pymongo, it is possible to scrape
dynamic websites such as CoinMarketCap in real time.

By utilising HTML, CSS, and JavaScript we created a
more user-friendly graphical interface, the tool's
integration with the web scraper enabled smooth user-web
scraper interaction and further simplified the process to
make it accessible and usable for users with comparatively
little technical expertise.
It then addressed such challenges as large datasets,
dynamic page loading, and error handling and in so doing
improved its efficiency and reliability. This gave way to a
scalable solution for collecting real-time cryptocurrency
data and laid a solid foundation for future developments
such as advanced analysis and integration with financial
tools.
This platform is a good way of automating cryptocurrency
data mining that provides valuable insights to analysts and
researchers with minimal manual effort. Reliability,
scalability, and cost-effectiveness would characterize
collection, storage, and analysis of large volumes of real-
time cryptocurrency data.

V.ACKNOWLEDGEMENT
We would like to thank Mr Rajesh Sharma, Assistant
Professor, MCA Department, School of Computer
Application and Technology, Galgotias University, for the
valuable guidance, constant encouragement, and insightful
suggestions along the length of this research. The
mentorship by him has helped in channelizing the study's
direction and in overcoming technical challenges that were
many.
Finally, we are happy to thank Galgotias University for
providing all of these resources and infrastructure in front
of us that led to us completing this project. Most
importantly, we want to thank our friends and colleagues,
who encouraged us all throughout the study.
We are all greatly thankful for the authors and developers
of the various Python tools, libraries, and documentation
that we used in this paper. This project would never have
been a reality without all of these libraries.

VI.REFERENCES
1. Almalki, M. (2023). The Role of Web-Scraping
Technology to Analyze Cryptocurrency Data. Electronics,
13(14), 2700. doi:10.3390/electronics13142700
2. Alotaibi, M., & Alabdulqader, M. (2023). Improving
cryptocurrency trading using web-scraping and machine
learning strategies. Res. Square. Retrieved from
https://www.researchsquare.com/article/rs-3854342/v1
3. Jain, R. K., & Shukla, A. (2023). Automatic
Extraction and Analysis of Data in Cryptocurrency.
International Journal of Management Research and Social
Science,
https://www.publications.scrs.in/uploads/final_menuscript/
9ad9e5cc9555d1b867d2d74ed6114724.pdf

4. Patel, V. (2023). CryptoCompetitor “A Review
Paper” in Automated Tools Used in CryptoCurrency.
International Journal of Modern Research in Science and
Technology, 6(1), 17-21. Retrieved from
http://www.ijmrset.com/upload/26_Automation.pdf
5. GeeksforGeeks. (2023). Scrape table from website
using Python Selenium. https://www.geeksforgeeks.
org/scrape-table-from-website-using-python-selenium/
6. MongoDB. Overview of The Driver For Python’s
Pymongo Module. Retrieved 2 October 2024, from
https://www.mongodb.com/docs/languages/python/pymon
go-
driver/current/connect/mongoclient/#:~:text=API%20Docu
mentation-
,Overview,you%20perform%20operations%20on%20it.
7. Mitchell, R. (2018). Web Scraping With Python: The
Next Generation Of Web Data Extraction (2nd ed.).
O'Reilly Media.
8. Sweigart, A. (2019). Automate the Boring Stuff with
Python: Practical Programming for Complete Beginners.
9. Yuan, S. (2023). Design and visualization of web
scraping using python through external libraries and tools
of selenium. Academic Journal of Computing &
Information Systems. Available at francis-press.com.
10. Nariman, D. (2024, April 10). Increasing the
performance as well as the accuracy of customer review
data harvesting through a multi threaded web scraping
approach.

https://www/

